Dopamine: Generalization and Bonuses

Citation:

S. Kakade and P. Dayan, Dopamine: Generalization and Bonuses. Neural Networks: , 2002.

Abstract:

In the temporal difference model of primate dopamine neurons, their phasic activity reports a prediction error for future reward. This model is supported by a wealth of experimental data. However, in certain circumstances, the activity of the dopamine cells seems anomalous under the model, as they respond in particular ways to stimuli that are not obviously related to predictions of reward. In this paper, we address two important sets of anomalies, those having to do with generalization and novelty. Generalization responses are treated as the natural consequence of partial information; novelty responses are treated by the suggestion that dopamine cells multiplex information about reward bonuses, including exploration bonuses and shaping bonuses. We interpret this additional role for dopamine in terms of the mechanistic attentional and psychomotor effects of dopamine, having the computational role of guiding exploration.

Publisher's Version

See also: 2002
Last updated on 10/15/2021