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Abstract

Suppose a given observation matrix can be decomposed as the sum of a low-rank matrix and a sparse
matrix (outliers), and the goal is to recover these individual components from the observed sum. Such
additive decompositions have applications in a variety of numerical problems including system identi-
fication, latent variable graphical modeling, and principal components analysis. We study conditions
under which recovering such a decomposition is possible via a combination of ℓ1 norm and trace norm
minimization. We are specifically interested in the question of how many outliers are allowed so that
convex programming can still achieve accurate recovery, and we obtain stronger recovery guarantees than
previous studies. Moreover, we do not assume that the spatial pattern of outliers is random, which stands
in contrast to related analyses under such assumptions via matrix completion.

1 Introduction

This work studies additive decompositions of matrices into sparse (outliers) and low-rank components. Such
decompositions have found applications in a variety of numerical problems, including system identifica-
tion (Chandrasekaran et al., 2009), latent variable graphical modeling (Chandrasekaran et al., 2010), and
principal component analysis (Candès et al., 2009). In these settings, the user has an input matrix Y ∈ R

m×n

which is believed to be the sum of a sparse matrix XS and a low-rank matrix XL. For instance, in the ap-
plication to principal component analysis, XL represents a matrix of m data points from a low-dimensional
subspace of Rn, and is corrupted by a sparse matrix XS of errors before being observed as

Y = XS + XL.
(sparse) (low-rank)

The goal is to recover the original data matrix XL (and the error components XS) from the corrupted
observations Y . In the latent variable model application of Chandrasekaran et al. (2010), Y represents the
precision matrix over visible nodes of a Gaussian graphical model, and XS represents the precision matrix
over the visible nodes when conditioned on the hidden nodes. In general, Y may be dense as a result of
dependencies between visible nodes through the hidden nodes. However, XS will be sparse when the visible
nodes are mostly independent after conditioning on the hidden nodes, and the difference XL = Y −XS will
be low-rank when the number of hidden nodes is small. The goal is then to infer the relevant dependency
structure from just the visible nodes and measurements of their correlations.

Even if the matrix Y is exactly the sum of a sparse matrix XS and a low-rank matrix XL, it may be
impossible to identify these components from the sum. For instance, the sparse matrix XS may be low-rank,
or the low-rank matrix XL may be sparse. In such cases, these components may be confused for each other,
and thus the desired decomposition of Y may not be identifiable. Therefore, one must impose conditions on
the sparse and low-rank components in order to guarantee their identifiability from Y .
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We present sufficient conditions under which XS and XL are identifiable from the sum Y . Essentially,
we require that XS not be too dense in any single row or column, and that the singular vectors of XL not
be too sparse. The level of denseness and sparseness are considered jointly in the conditions in order to
obtain the weakest possible conditions. Under a mild strengthening of the condition, we also show that XS

and XL can be recovered by solving certain convex programs, and that the solution is robust under small
perturbations of Y . The first program we consider is

min λ‖XS‖vec(1) + ‖XL‖∗

(subject to certain feasibility constraints such as ‖XS + XL − Y ‖ ≤ ǫ) where ‖ · ‖vec(1) is the entry-wise
1-norm and ‖·‖∗ is the trace norm. These norms are natural convex surrogates for the sparsity of XS and the
rank of XL (Tibshirani, 1996; Fazel, 2002), which are generally intractable to optimize. We also considered
a regularized formulation

min
1

2µ
‖XS +XL − Y ‖2vec(2) + λ‖XS‖vec(1) + ‖XL‖∗

where ‖ · ‖vec(2) is the Frobenius norm; such a formulation may be more suitable in certain applications and
enjoys different recovery guarantees.

1.1 Related work

Our work closely follows that of Chandrasekaran et al. (2009), who initiated the study of rank-sparsity
incoherence and its application to matrix decompositions. There, the authors identify parameters that
characterize the incoherence of XS and XL sufficient to guarantee identifiability and recovery using convex
programs. However, their analysis of this characterization yields conditions that are significantly stronger
than those given in the our present work. For instance, the allowed fraction of non-zero entries in XS is
quickly vanishing as a function of the matrix size, even under the most favorable conditions on XL; our
analysis does not have this restriction and allows XS to have up to Ω(mn) non-zero entries when XL is low-
rank and has non-sparse singular vectors. Therefore, for instance, in the application to principal component
analysis, our analysis allows for up to a constant fraction of the data matrix entries to be corrupted by
noise of arbitrary magnitude, whereas the analysis of Chandrasekaran et al. requires that it decrease as a
function of the matrix dimensions. Moreover, Chandrasekaran et al. only consider exact decompositions,
which may be unrealistic in certain applications; we allow for approximate decompositions, and study the
effect of perturbations on the accuracy of the recovered components.

The application to principal component analysis with gross sparse errors was studied by Candès et al.
(2009), building on previous results and analysis techniques for the related matrix completion problem
(e.g., Candès and Recht 2009; Gross 2009). The sparse errors model studied by Candès et al. requires that
the support of the sparse matrix XS be random, which can be unrealistic in some settings. However, the
conditions are significantly weaker than those of Chandrasekaran et al. (2009): for instance, they allow for
Ω(mn) non-zero entries inXS . Our work makes no probabilistic assumption on the sparsity pattern ofXS and
instead studies purely deterministic structural conditions. The price we pay, however, is roughly a factor of
rank(XL) in what is allowed for the support size of XS (relative to the probabilistic analysis of Candès et al.).
Narrowing this gap with alternative deterministic conditions is an interesting open problem. Follow-up work
to (Candès et al., 2009) studies the robustness of the recovery procedure (Zhou et al., 2010), as well as
quantitatively weaker conditions on XS (Ganesh et al., 2010), but these works are only considered under the
random support model. Our work is therefore largely complementary to these probabilistic analyses.

1.2 Outline

We describe our main results in Section 2. In Section 3, we review a number of technical tools such as
matrix and operator norms that are used to characterize the rank-sparsity incoherence properties of the
desired decomposition. Section 4 analyses these incoherence properties in detail, giving sufficient conditions
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for identifiability as well as for certifying the (approximate) optimality of a target decomposition for our
optimization formulations. The main recovery guarantees are proved in Sections 5 and 6.

2 Main results

Fix an observation matrix Y ∈ R
m×n. Our goal is to (approximately) decompose the matrix Y into the sum

of a sparse matrix XS and a low-rank matrix XL.

2.1 Optimization formulations

We consider two convex optimization problems over (XS , XL) ∈ R
m×n ×R

m×n. The first is the constrained
formulation (parametrized by λ > 0, ǫvec(1) ≥ 0, and ǫ∗ ≥ 0)

min λ‖XS‖vec(1) + ‖XL‖∗
s.t. ‖XS +XL − Y ‖vec(1) ≤ ǫvec(1)

‖XS +XL − Y ‖∗ ≤ ǫ∗

(1)

where ‖ · ‖vec(1) is the entry-wise 1-norm, and ‖ · ‖∗ is the trace norm (i.e., sum of singular values). The
second is the regularized formulation (with regularization parameter µ > 0)

min 1
2µ‖XS +XL − Y ‖2vec(2) + λ‖XS‖vec(1) + ‖XL‖∗ (2)

where ‖ · ‖vec(2) is the Frobenius norm (entry-wise 2-norm).
We also consider adding a constraint to control ‖XL‖vec(∞), the entry-wise ∞-norm of XL. To (1), we

add the constraint
‖XL‖vec(∞) ≤ b

and to (2), we add
‖XS − Y ‖vec(∞) ≤ b

The parameter b is intended as a natural bound for XL and is typically known in applications. For example,
in image processing, the values of interest may lie in the interval [0, 255], and hence, we may take b = 500 as a
relaxation of the box constraint [0, 255]. The core of our analyses do not rely on these additional constraints;
we only consider them to obtain improved robustness guarantees for recovering XL, which may be important
in some applications.

2.2 Identifiability conditions

Our first result is a refinement of the rank-sparsity incoherence notion developed by Chandrasekaran et al.
(2009). We characterize a target decomposition of Y into Y = X̄S + X̄L by the projection operators to
subspaces associated with X̄S and X̄L. Let

Ω̄ = Ω(X̄S) := {X ∈ R
m×n : supp(X) ⊆ supp(X̄S)}

be the space of matrices whose supports are subsets of the support of X̄S , and let PΩ̄ be the orthogonal
projector to Ω̄ under the inner product 〈A,B〉 = tr(A⊤B), where PΩ̄(M) is given by

[PΩ̄(M)]i,j =

{

Mi,j if (i, j) ∈ supp(X̄S)
0 otherwise

∀i ∈ [m], j ∈ [n].

Furthermore, let

T̄ = T (X̄L) := {X1 +X2 ∈ R
m×n : range(X1) ⊆ range(X̄L), range(X⊤

2 ) ⊆ range(X̄⊤
L )}
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be the span of matrices either in the row-space or column-space of X̄L, and let PT̄ be the orthogonal projector
to T̄ , again, under the inner product 〈A,B〉 = tr(A⊤B); this is given by

PT̄ (M) = Ū Ū⊤M +MV̄ V̄ ⊤ − ŪŪ⊤MV̄ V̄ ⊤

where Ū ∈ R
m×r̄ and V̄ ∈ R

n×r̄ are, respectively, matrices of left and right orthonormal singular vectors
corresponding to the non-zero singular values of X̄L, and r̄ is the rank of X̄L. We will see that certain
operator norms of PΩ̄ and PT̄ can be bounded in terms of structural properties of X̄S and X̄L. The first
property measures the maximum number of non-zero entries in any row or column of X̄S :

α(ρ) := max
{

ρ‖ sign(X̄S)‖1→1, ρ−1‖ sign(X̄S)‖∞→∞

}

where ‖M‖p→q := max{‖Mv‖q : v ∈ R
n, ‖v‖p ≤ 1},

sign(M)i,j =







−1 if Mi,j < 0
0 if Mi,j = 0

+1 if Mi,j > 0
∀i ∈ [m], j ∈ [n]

and ρ > 0 is a balancing parameter to accommodate disparity between the number of rows and columns; a
natural choice for the balancing parameter is ρ :=

√

n/m. We remark that ρ is only a parameter for the
analysis; the optimization formulations do not directly involve ρ. Note that X̄S may have Ω(mn) non-zero
entries and α(

√

n/m) = O(
√
mn) as long as the non-zero entries of X̄S are spread out over the entire matrix.

Conversely, a sparse matrix with just O(m + n) could have α(
√

n/m) =
√
mn by having all of its non-zero

entries in just a few rows and columns.
The second property measures the sparseness of the singular vectors of X̄L:

β(ρ) := ρ−1‖ŪŪ⊤‖vec(∞) + ρ‖V̄ V̄ ⊤‖vec(∞) + ‖Ū‖2→∞‖V̄ ‖2→∞.

For instance, if the singular vectors of X̄L are perfectly aligned with the coordinate axes, then β(ρ) =
Ω(1). On the other hand, if the left and right singular vectors have entries bounded by

√

c/m and
√

c/n,

respectively, for some c ≥ 1, then β(
√

n/m) ≤ 3cr̄/
√
mn.

Our main identifiability result is the following.

Theorem 1. If infρ>0 α(ρ)β(ρ) < 1, then Ω̄ ∩ T̄ = {0}.
Theorem 1 is an immediate consequence of the following lemma (also given as Lemma 10).

Lemma 1. For all M ∈ R
m×n, ‖PΩ̄(PT̄ (M))‖vec(1) ≤ infρ>0 α(ρ)β(ρ)‖M‖vec(1).

Proof of Theorem 1. Take any M ∈ Ω̄∩ T̄ . By Lemma 1, ‖PΩ̄(PT̄ (M))‖vec(1) ≤ α(ρ)β(ρ)‖M‖vec(1). On the
other hand, PΩ̄(PT̄ (M)) = M , so α(ρ)β(ρ) < 1 implies ‖M‖vec(1) = 0, i.e., M = 0.

Clearly, if Ω̄ ∩ T̄ contains a matrix other than 0, then {(X̄S +M, X̄L −M) : M ∈ Ω̄ ∩ T̄} gives a family
of sparse/low-rank decompositions of Y = X̄S + X̄L with at least the same sparsity and rank as (X̄S , X̄L).
Conversely, if Ω̄ ∩ T̄ = {0}, then any matrix in the direct sum Ω̄⊕ T̄ has exactly one decomposition into a
matrix A ∈ Ω̄ plus a matrix B ∈ T̄ , and in this sense (X̄S , X̄L) is identifiable.

Note that, as we have argued above, the condition infρ>0 α(ρ)β(ρ) < 1 may be achieved even by matrices
X̄S with Ω(mn) non-zero entries, provided that the non-zero entries of X̄S are sufficiently spread out, and
that X̄L is low-rank and has singular vectors far from the coordinate bases. This is in contrast with the
conditions studied by Chandrasekaran et al. (2009). Their analysis uses a different characterization of X̄S and
X̄L, which leads to a stronger identifiability condition in certain cases. Roughly, if X̄S has an approximately
symmetric sparsity pattern (so ‖ sign(X̄S)‖1→1 ≈ ‖ sign(X̄S)‖∞→∞), then Chandrasekaran et al. require
α(1)

√

β(1) < 1 for square n× n matrices.1 Since β(1) = Ω(1/n) for any X̄L ∈ R
n×n, the condition implies

1Chandrasekaran et al. (2009) do not explicitly work out the non-square case, but claim that n can be replaced in their
analysis by the larger matrix dimension max{m,n}. However this does not seem possible, and the analysis there should only
lead to the quite suboptimal dimensionality dependency min{m,n}. This is because a rectangular matrix X̄L will have left and
right singular vectors of different dimensions and thus different allowable ranges of infinity norms.
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α(1)2 = O(n). Therefore X̄S must have at most O(n) non-zero entries (or else α(1)2 becomes super-linear).
In other words, the fraction of non-zero entries allowed in X̄S by the condition α(1)

√

β(1) < 1 is quickly
vanishing as a function of n.

2.3 Recovery guarantees

Our next results are guarantees on (approximately) recovering the sparse/low-rank decomposition (X̄S , X̄L)
from Y = X̄S+X̄L via solving either convex optimization problems (1) or (2). We require a mild strengthen-
ing of the condition infρ>0 α(ρ)β(ρ) < 1, as well as appropriate settings of λ > 0 and µ > 0 for our recovery
guarantees. Before continuing, we first define another property of X̄L:

γ := ‖Ū V̄ ⊤‖vec(∞)

which is approximately the same as (in fact, bounded above by) the third term in the definition of β(ρ).
The quantities α(ρ), β(ρ), and γ are central to our analysis. Therefore we state the following proposition for
reference, which provides a more intuitive understanding of their behavior. This is the only part in which
explicit dimensional dependencies comes into our analysis.

Proposition 1. Let m0 the maximum number of non-zero entries of X̄S per column and n0 be the maximum
number of non-zero entries of X̄S per row. Let r̄ be the rank of Ū and V̄ . Assume further that m0 ≤ c1m/r̄
and n0 ≤ c1n/r̄ for some c1 ∈ (0, 1), and ‖Ū‖vec(∞) ≤

√

c2/m and ‖V̄ ‖vec(∞) ≤
√

c2/n for some c2 > 0.

Then with ρ =
√

n/m, we have

α(ρ) ≤ c1
r̄

√
mn, β(ρ) ≤ 3c2r̄√

mn
, γ ≤ c2r̄√

mn
.

We now proceed with conditions for the regularized formulation (2). Let E := Y − (X̄S + X̄L) and

ǫ2→2 := ‖E‖2→2

ǫvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞).

We require the following, for some ρ > 0 and c > 1:

α(ρ)β(ρ) < 1 (3)

λ ≤ (1 − α(ρ)β(ρ))(1 − c · µ−1ǫ2→2)− c · α(ρ)µ−1ǫvec(∞) − c · α(ρ)γ
c · α(ρ) (4)

λ ≥ c · γ + µ−1(2− α(ρ)β(ρ))ǫvec(∞)

1− α(ρ)β(ρ) − c · α(ρ)β(ρ) > 0. (5)

For instance, if for some ρ > 0,

α(ρ)γ ≤ 1

41
and α(ρ)β(ρ) ≤ 3

41
, (6)

then the conditions are satisfied for c = 2 provided that µ and λ are chosen to satisfy

µ ≥ max

{

4 · ǫ2→2,
2

15
· ǫvec(∞)

λ

}

and
15

2
· γ ≤ λ ≤ 15

82
· 1

α(ρ)
. (7)

Note that (6) can be satisfied when c1 ≤ c−1
2 /41 in Proposition 1.

For the constrained formulation (1), our analysis requires the same conditions as above, except with E
set to 0. Note that our analysis still allows for approximate decompositions; it is only the conditions that
are formulated with E = 0. Specifically, we require for some ρ > 0 and c > 1:

α(ρ)β(ρ) < 1 (8)

λ ≤ 1− α(ρ)β(ρ) − c · α(ρ)γ
c · α(ρ) (9)

λ ≥ c · γ

1− α(ρ)β(ρ) − c · α(ρ)β(ρ) > 0. (10)

5



For instance, if for some ρ > 0,

α(ρ)γ ≤ 1

15
and α(ρ)β(ρ) ≤ 1

5
, (11)

then the conditions are satisfied for c = 2 provided that λ is chosen to satisfy

5γ ≤ λ ≤ 1

3α(ρ)
. (12)

Note that (11) can be satisfied when c1 ≤ c−1
2 /15 in Proposition 1.

In summary, Proposition 1 shows that our results can be applied even with m0 = Ω(m/r̄) and n0 =
Ω(n/r̄) outliers. In contrast, the results of Chandrasekaran et al. (2009) only apply under the condi-
tion max(m0, n0) = O(

√

min(m,n)/r̄), which is significantly stronger. Moreover, unlike the analysis
of Candès et al. (2009), we do not have to assume that supp(X̄S) is random.

The following theorem gives our recovery guarantee for the constrained formulation (1).

Theorem 2. Fix a target pair (X̄S , X̄L) ∈ R
m×n × R

m×n satisfying ‖Y − (X̄S + X̄L)‖vec(1) ≤ ǫvec(1) and
‖Y − (X̄S + X̄L)‖∗ ≤ ǫ∗. Assume the conditions (8), (9), and (10) hold for some ρ > 0 and c > 1. Let
(X̂S , X̂L) ∈ R

m×n be the solution to the convex optimization problem (1). We have

max
{

‖X̂S − X̄S‖vec(1), ‖X̂L − X̄L‖vec(1)
}

≤
(

1 + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)

)

· ǫvec(1) + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)
· ǫ∗/λ.

If, in addition for some b ≥ ‖X̄L‖vec(∞), either:

• the optimization problem (1) is augmented with the constraint ‖XL‖vec(∞) ≤ b, or

• X̂L is post-processed by replacing [X̂L]i,j with min{max{[X̂L]i,j ,−b}, b} for all i, j,

then we also have

‖X̂L − X̄L‖vec(2) ≤ min

{

‖X̂L − X̄L‖vec(1),
√

2b · ‖X̂L − X̄L‖vec(1)
}

.

The proof of Theorem 2 is in Section 5. It is clear that if Y = X̄S + X̄L, then we can set ǫvec(1) = ǫ∗ = 0

and we obtain exact recovery: X̂S = X̄S and X̂L = X̄L. Moreover, any perturbation Y − (X̄S + X̄L)
affects the accuracy of (X̂S , X̂L) in entry-wise 1-norm by an amount O(ǫvec(1) + ǫ∗/λ). Note that here, the
parameter λ serves to balance the entry-wise 1-norm and trace norm of the perturbation in the same way it
is used in the objective function of (1). So, for instance, if we have the simplified conditions (11), then we
may choose λ =

√

(5/3)γ/α(ρ) to satisfy (12), upon which the error bound becomes

max
{

‖X̂S − X̄S‖vec(1), ‖X̂L − X̄L‖vec(1)
}

= O

(

ǫvec(1) +

√

α(ρ)

γ
· ǫ∗
)

.

It is possible to modify the constraints in (1) to use norms other than ‖ · ‖vec(1) and ‖ · ‖∗; the analysis could
at the very least be modified by simply using standard relationships to change between norms, although this
may introduce new slack in the bounds. Finally, the second part of the theorem shows how the accuracy
of X̂L in Frobenius norm can be improved by adding an additional constraint or by post-processing the
solution.

Now we state our recovery guarantees for the regularized formulation (2).

6



Theorem 3. Fix a target pair (X̄S , X̄L) ∈ R
m×n × R

m×n. Let E := Y − (X̄S + X̄L) and

ǫ2→2 := ‖E‖2→2

ǫvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞)

ǫ′∗ := ‖PT̄ (E)‖∗.

Let k̄ := | supp(X̄S)| and r̄ := rank(X̄L). Assume the conditions (3), (4), and (5) hold for some ρ > 0 and
c > 1. Let (X̂S , X̂L) ∈ R

m×n be the solution to the convex optimization problem (2) augmented with the
constraint ‖XS − Y ‖vec(∞) ≤ b for some b ≥ ‖X̄S − Y ‖vec(∞) (b = ∞ is allowed). Let

r̄′ :=
(

λ+ µ−1ǫvec(∞)

)

· 2k̄

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

+
(

1 + 2µ−1ǫ2→2

)

· 2r̄ ·
(

2α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

+ 1 + 2µ−1ǫ2→2

)

.

We have

‖X̂S − X̄S‖vec(1) ≤ r̄′ · (1− 1/c)−1λ−1 · µ+ λk̄ · µ+ 2
√
k̄r̄ · µ+ k̄ · ǫvec(∞)

1− α(ρ)β(ρ)

‖X̂S − X̄S‖vec(2) ≤ min

{

‖X̂S − X̄S‖vec(1),
√

2b · ‖X̂S − X̄S‖vec(1)
}

‖X̂L − X̄L‖∗ ≤
√
2r̄ · ‖X̂S − X̄S‖vec(2) + ǫ′∗ +

(

r̄′ · (1− 1/c)−1

2
+ 2r̄

)

· µ.

The proof of Theorem 3 is in Section 6. As before, if Y = X̄S + X̄L so E = 0, then we can set µ → 0
and obtain exact recovery with X̂S = X̄S and X̂L = X̄L. When the perturbation E is non-zero, we control
the accuracy of X̄S in entry-wise 1-norm and 2-norm, and the accuracy of X̄L in trace norm. Under the
simplified conditions (6), we can choose λ = (15/82)/α(ρ) and µ = max{4ǫ2→2, 2ǫvec(∞)/(15λ)} to satisfy
(7); this leads to the error bounds

‖X̂S − X̄S‖vec(1) = O
(

r̄α(ρ) ·max
{

ǫ2→2, α(ρ)ǫvec(∞)

})

‖X̂L − X̄L‖∗ = O

(√
r̄ ·min

{

√

b · ‖X̂S − X̄S‖vec(1), ‖X̂S − X̄S‖vec(1)
}

+ ǫ′∗ + r̄ ·max
{

ǫ2→2, α(ρ)ǫvec(∞)

}

)

(here, we have used the facts k̄ ≤ α(ρ)2, α(ρ)λ = Θ(1), and r̄′ = O(r̄), which also implies that k̄ · ǫvec(∞) =
O(α(ρ) · α(ρ)ǫvec(∞))). Finally, note that if the constraint ‖XS − Y ‖vec(∞) ≤ b is added (i.e., b < ∞), then
the requirement b ≥ ‖X̄S − Y ‖vec(∞) can be satisfied with b := ‖X̄S‖vec(∞) + ǫvec(∞). This allows for a

possibly improved bound on ‖X̂L − X̄L‖∗.

2.4 Examples

We illustrate our main results with some simple examples.

2.4.1 Random models

We first consider a random model for the matrices X̄S and X̄L (Chandrasekaran et al., 2009). Let the
support of X̄S be chosen uniformly at random k̃ times over the [m] × [n] matrix entries (so that one entry
can be selected multiple times). The value of the entries in the chosen support can be arbitrary. With high
probability, we have

‖ sign(X̄S)‖1→1 = O

(

k̃ logn

n

)

and ‖ sign(X̄S)‖∞→∞ = O

(

k̃ logm

m

)

7



so for ρ :=
√

(n logm)/(m logn), we have

α(ρ) = O

(

k̃

√

(logm)(logn)

mn

)

.

The logarithmic factors are due to collisions in the random process. Now let Ū and V̄ be chosen uniformly
at random over all families of r̄ orthonormal vectors in R

m and R
n, respectively. Using arguments similar

to those in (Candès and Recht, 2009), one can show that with high probability,

‖ŪŪ⊤‖vec(∞) = O

(

r̄ logm

m

)

‖V̄ V̄ ⊤‖vec(∞) = O

(

r̄ logn

n

)

‖Ū‖2→∞ = O

(

√

r̄ logm

m

)

‖V̄ ‖2→∞ = O

(

√

r̄ logn

n

)

,

so for the previously chosen ρ, we have

β(ρ) = O

(

r̄

√

(logm)(log n)

mn

)

and γ = O

(

r̄

√

(logm)(logn)

mn

)

.

Therefore

α(ρ)β(ρ) = O

(

k̃r̄(logm)(log n)

mn

)

and α(ρ)γ = O

(

k̃r̄(logm)(log n)

mn

)

,

both of which are ≪ 1 provided that

k̃ ≤ δ · mn

r̄(logm)(log n)

for a small enough constant δ ∈ (0, 1). In other words, when X̄L is low-rank, the matrix X̄S can have nearly
a constant fraction of its entries be non-zero while still allowing for exact decomposition of Y = X̄S + X̄L.
Our guarantee improves over that of Chandrasekaran et al. (2009) by roughly a factor of Ω((mn)1/4), but is
worse by a factor of r̄(logm)(log n) relative to the guarantees of Candès et al. (2009) for the random model.
Therefore there is a gap between our generic deterministic analysis and a direct probabilistic analysis of this
random model, and this gap seems unavoidable with sparsity conditions based on α(ρ). It is an interesting
open problem to find alternative characterizations of supp(X̄S) that can narrow or close this gap.

2.4.2 Principal component analysis with outliers

Suppose X̄L is matrix of m data points lying in a low-dimensional subspace of R
n, and Z is a random

matrix with independent Gaussian noise entries with variance σ2. Then Y ′ = X̄L+Z is the standard model
for principal component analysis. We augment the model with a sparse noise component X̄S to obtain
Y = X̄S + X̄L + Z; here, we allow the non-zero entries of X̄S to possibly approach infinity.

According to Theorem 3, we need to estimate ‖Z‖2→2, ‖Z‖vec(∞), ‖PT̄ (Z)‖vec(∞), and ‖PT̄ (Z)‖∗. We
have the following with high probability (Davidson and Szarek, 2001),

‖Z‖2→2 ≤ σ
√
m+ σ

√
n+O(σ).

Using standard arguments with the rotational invariance of the Gaussian distribution, we also have

‖Z‖vec(∞) ≤ O(σ log(mn)) and ‖PT̄ (Z)‖vec(∞) ≤ O(σ log(mn))

with high probability. Finally, by Lemma 5, we have

‖PT̄ (Z)‖∗ ≤ 2r̄‖Z‖2→2 ≤ 2r̄σ
√
m+ 2r̄σ

√
n+O(r̄σ).
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Suppose (X̄S , X̄L) has α(ρ) ≤ c1(
√
mn/r̄), β(ρ) = Θ(r̄/

√
mn), and γ = Θ(r̄/

√
mn) and satisfies the simpli-

fied condition (6). This can be achieved with c1c2 ≤ 1/41 in Proposition 1. Also assume λ and µ are chosen
to satisfy (7), and that b ≥ ‖X̄L‖vec(∞) + ǫvec(∞). Then we note that k̄ = O(c21mn/r̄2), and thus have from
Theorem 3 (see the discussion thereafter):

‖X̂S − X̄S‖vec(1) = O
(

c1
√
mnmax{σ

√
m+ σ

√
n, σ

√
mn log(mn)/r̄}

)

= O (σc1mn log(mn)/r̄)

‖X̂L − X̄L‖∗ = O
(

√

bσc1mn log(mn)/r̄ + r̄σ(
√
m+

√
n)) + c1

√
mn
)

,

where we may take b = O(σ log(mn) + ‖XL‖vec(∞))).
Now consider the situation where both m,n → ∞, and assume that ‖X̄L‖vec(∞) remains bounded. If

c1(log(mn))2 = o(1), which implies that the we have at most o(m/(log(mn))2) outliers per column and
o(n/(log(mn))2) outliers per row, then

‖X̂L − X̄L‖∗ = O(r̄σ(
√
m+

√
n)).

That is, the normalized trace norm ‖X̂L − X̄L‖∗/
√
nm → 0. This means that we can correctly recover

the principal components of X̄L with both outliers and random noise, when both m and n are large and
c1(log(mn))2 = o(1) in Proposition 1.

3 Technical preliminaries

3.1 Norms, inner products, and projections

Our analysis involves a variety of norms of vectors, matrices (viewed as elements of a vector space as well
as linear operators of vectors), and linear operators of matrices; we define these and related notions in this
section.

3.1.1 Entry-wise norms

For any p ∈ [1,∞], define ‖v‖p := (
∑

i |vi|p)1/p be the p-norm of a vector v (with ‖v‖∞ := maxi |vi|). Also,
define ‖M‖vec(p) := (

∑

i,j |Mi,j |p)1/p to be the entry-wise p-norm of a matrix M (again, with ‖M‖vec(∞) :=
maxi,j |Mi,j|). Note that ‖ · ‖vec(2) corresponds to the Frobenius norm.

3.1.2 Inner products, linear operators, and orthogonal projections

We endow R
m×n with the inner product 〈·, ·〉 between matrices that induces the Frobenius norm ‖ · ‖vec(2);

this is given by 〈M,N〉 = tr(M⊤N).
For a linear operator T : Rm×n → R

m×n, we denote its adjoint by T ∗; this is the unique linear operator
that satisfies 〈T ∗(M), N〉 = 〈M, T (N)〉 for all M ∈ R

m×n and N ∈ R
m×n (in this work, we only consider

bounded linear operators). For any two linear operators T1 and T2, we let T1 ◦ T2 denote their composition
as defined by (T1 ◦ T2)(M) := T1(T2(M)).

Given a subspaceW ⊆ R
m×n, we letW⊥ denote its orthogonal complement, and let PW : Rm×n → R

m×n

denote the orthogonal projector to W with respect to 〈·, ·〉, i.e., the unique linear operator with range W
and satisfying PW

∗ = PW and PW ◦ PW = PW .

3.1.3 Induced norms

For any two vector norms ‖ · ‖p and ‖ · ‖q, define ‖M‖p→q := maxx 6=0 ‖Mx‖q/‖x‖p to be the corresponding
induced operator norm of a matrix M . Our analysis uses the following special cases which have alternative
definitions:
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• ‖M‖1→1 = maxj ‖Mej‖1,

• ‖M‖1→2 = maxj ‖Mej‖2,

• ‖M‖2→2 = spectral norm of M (i.e., largest singular value of M),

• ‖M‖2→∞ = maxi ‖M⊤ei‖2, and

• ‖M‖∞→∞ = maxi ‖M⊤ei‖1.

Here, ei is the ith coordinate vector which has a 1 in the ith position and 0 elsewhere.
Finally, we also consider induced operator norms of linear matrix operators T : Rm×n → R

m×n (in
particular, projection operators with respect to 〈·, ·〉). For any two matrix norms ‖ · ‖♦ and ‖ · ‖♥, define
‖T ‖♦→♥ := maxM 6=0 ‖T (M)‖♥/‖M‖♦.

3.1.4 Other norms

The trace norm (or nuclear norm) ‖M‖∗ of a matrix M is the sum of the singular values of M . We will also
make use of a hybrid matrix norm ‖ · ‖♯(ρ), parametrized by ρ > 0, which we define by

‖M‖♯(ρ) := max{ρ‖M‖1→1, ρ−1‖M‖∞→∞}.

Also define ‖M‖♭(ρ) := sup‖N‖♯(ρ)≤1〈M,N〉, i.e., the dual of ‖ · ‖♯(ρ) (see below).

3.1.5 Dual pairs

The matrix norm ‖ · ‖♥ is said to be dual to ‖ · ‖♠ if, for all M ∈ R
m×n, ‖M‖♥ = sup‖N‖♠≤1〈M,N〉.

Proposition 2. Fix any matrix norm ‖ · ‖♠, and let ‖ · ‖♥ be its dual. For all M ∈ R
m×n and N ∈ R

m×n,
we have

〈M,N〉 ≤ ‖M‖♠‖N‖♥.

Proposition 3. Fix any any linear matrix operator T : Rm×n → R
m×n and any pair of matrix norms ‖ · ‖♠

and ‖ · ‖♣. We have
‖T ‖♠→♣ = ‖T ∗‖♦→♥,

where ‖ · ‖♥ is dual to ‖ · ‖♠, and ‖ · ‖♦ is dual to ‖ · ‖♣.

The following pairs of matrix norms are dual to each other:

1. ‖ · ‖vec(p) and ‖ · ‖vec(q) where 1/p+ 1/q = 1;

2. ‖ · ‖∗ and ‖ · ‖2→2;

3. ‖ · ‖♯(ρ) and ‖ · ‖♭(ρ) (by definition).

3.1.6 Some lemmas

First we show that the ‖ · ‖♯(ρ) norm (for any ρ > 0) bounds the spectral norm ‖ · ‖2→2.

Lemma 2. For any M ∈ R
m×n, we have for all ρ > 0,

‖M‖2→2 ≤ ‖M‖♯(ρ).
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Proof. Let σ be the largest singular value of M , and let u ∈ R
m and v ∈ R

n be, respectively, associated left
and right singular vectors. Then

∥

∥

∥

∥

[

0 ρM
ρ−1M⊤ 0

] [

ρ1/2u
ρ−1/2v

]∥

∥

∥

∥

1

=

∥

∥

∥

∥

[

ρ1/2Mv
ρ−1/2M⊤u

]∥

∥

∥

∥

1

= σ

∥

∥

∥

∥

[

ρ1/2u
ρ−1/2v

]∥

∥

∥

∥

1

.

Moreover, by definition of ‖ · ‖1→1,

∥

∥

∥

∥

[

0 ρM
ρ−1/2M⊤ 0

] [

ρ1/2u
ρ−1/2v

]∥

∥

∥

∥

1

≤
∥

∥

∥

∥

[

0 ρM
ρ−1M⊤ 0

]∥

∥

∥

∥

1→1

∥

∥

∥

∥

[

ρ1/2u
ρ−1/2v

]∥

∥

∥

∥

1

.

Therefore

‖M‖2→2 = σ ≤
∥

∥

∥

∥

[

0 ρM
ρ−1M⊤ 0

]∥

∥

∥

∥

1→1

= max{‖ρ−1M⊤‖1→1, ‖ρM‖1→1} = max{ρ−1‖M‖∞→∞, ρ‖M‖1→1} = ‖M‖♯(ρ).

The following lemma is the dual of Lemma 2.

Lemma 3. For any M ∈ R
m×n, we have for all ρ > 0,

‖M‖♭(ρ) ≤ ‖M‖∗.

Proof. We know that ‖M‖♭(ρ) = 〈M,N〉 for some matrix N such that ‖N‖♯(ρ) = 1. Therefore ‖N‖2→2 ≤ 1
from Lemma 2, and thus using Proposition 2,

‖M‖♭(ρ) = 〈M,N〉 ≤ ‖M‖∗‖N‖2→2 ≤ ‖M‖∗.

Finally we state a lemma concerning the invertibility of a certain block-form operator used in our analysis.

Lemma 4. Fix any matrix norm ‖·‖♠ on R
m×n and linear operators T1 : Rm×n → R

m×n and T2 : Rm×n →
R

m×n. Let I : Rm×n → R
m×n be the identity operator, and suppose ‖T1 ◦ T2‖♠→♠ < 1.

1. I − T1 ◦ T2 is invertible and satisfies

‖(I − T1 ◦ T2)−1‖♠→♠ ≤ 1

1− ‖T1 ◦ T2‖♠→♠
.

2. The linear operator on R
m×n × R

m×n
[

I T1
T2 I

]

is invertible, and its inverse is given by

[

I T1
T2 I

]−1

=

[

(I − T1 ◦ T2)−1 −(I − T1 ◦ T2)−1 ◦ T1
−T2 ◦ (I − T1 ◦ T2)−1 I + T2 ◦ (I − T1 ◦ T2)−1 ◦ T1

]

=

[

(I − T1 ◦ T2)−1 −(I − T1 ◦ T2)−1 ◦ T1
−(I − T2 ◦ T1)−1 ◦ T2 (I − T2 ◦ T1)−1

]

.

Proof. The first claim is a standard application of Taylor expansions. The second claim then follows from
formulae of block matrix inverses using Schur complements.
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3.2 Projection operators and subdifferential sets

Recall the definitions of the following subspaces

Ω(XS) := {X ∈ R
m×n : supp(X) ⊆ supp(XS)}

and
T (XL) := {X1 +X2 ∈ R

m×n : range(X1) ⊆ range(XL), range(X
⊤
2 ) ⊆ range(X⊤

L )}.
The orthogonal projectors to these spaces are given in the following proposition.

Proposition 4. Fix any XS ∈ R
m×n and XL ∈ R

m×n. For any matrix M ∈ R
m×n,

[PΩ(XS)(M)]i,j =

{

Mi,j if (i, j) ∈ supp(XS)
0 otherwise

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

PT (XL)(M) = UU⊤M +MV V ⊤ − UU⊤MV V ⊤

where U and V are the matrices of left and right singular vectors of XL.

Lemma 5. Under the setting of Proposition 4,

‖PΩ(XS)(M)‖vec(1) ≤
√

| supp(XS)|‖PΩ(XS)(M)‖vec(2) ≤
√

| supp(XS)|‖M‖vec(2)
‖PΩ(XS)(M)‖vec(1) ≤ | supp(XS)|‖PΩ(XS)(M)‖vec(∞) ≤ | supp(XS)|‖M‖vec(∞)

‖PT (XL)(M)‖2→2 ≤ 2‖M‖2→2

‖PT (XL)(M)‖∗ ≤ 2 rank(XL)‖M‖2→2

‖PT (XL)(M)‖vec(2) ≤ 2
√

rank(XL)‖M‖2→2.

Proof. The first and second claims rely on the fact that | supp(PΩ(XS)(M))| ≤ | supp(XS)|, as well as the
fact that PΩ(XS) is an orthonormal projector with respect to the inner product that induces the ‖ · ‖vec(2)
norm. For the third claim, note that

‖PT (XL)(M)‖2→2 ≤ ‖UU⊤M‖2→2 + ‖(I − UU⊤)MV V ⊤‖2→2 ≤ 2‖M‖2→2.

The remaining claims use a similar decomposition as the third claim as well as the fact that

max{rank(UU⊤M), rank((I − UU⊤)MV V ⊤)} ≤ rank(XL).

Define
sign(XS) ∈ {−1, 0,+1}m×n

to be the matrix whose (i, j)th entry is sign([XS ]i,j), and define

orth(XL) := UV ⊤,

where U and V , respectively, are matrices of the left and right orthonormal singular vectors of XL corre-
sponding to non-zero singular values. The following proposition characterizes the subdifferential sets for the
non-smooth norms ‖ · ‖vec(1) and ‖ · ‖∗ (Watson, 1992).

Proposition 5. The subdifferential set of XS 7→ ‖XS‖vec(1) is

∂XS
(‖XS‖vec(1)) = {G ∈ R

m×n : ‖G‖vec(∞) ≤ 1,PΩ(XS)(G) = sign(XS)};

the subdifferential set of XL 7→ ‖XL‖∗ is

∂XL
(‖XL‖∗) = {G ∈ R

m×n : ‖G‖2→2 ≤ 1,PT (XL)(G) = orth(XL)}.
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The following lemma is a simple consequence of subgradient properties.

Lemma 6. Fix λ > 0 and define the function g(XS , XL) := λ‖XS‖vec(1) + ‖XL‖∗. Consider any (X̄S , X̄L)
in R

m×n × R
m×n. If there exists Q ∈ R

m×n such that: Q is a subgradient of λ‖XS‖vec(1) at XS = X̄S, Q
is a subgradient of ‖XL‖∗ at XL = X̄L, and ‖PΩ(X̄S)⊥(Q)‖vec(∞) ≤ λ/c and ‖PT (X̄L)⊥(Q)‖2→2 ≤ 1/c for
some c > 1, then

g(XS , XL)−g(X̄S , X̄L) ≥ 〈Q,XS+XL−X̄S−X̄L〉+(1−1/c)
(

λ‖PΩ̄⊥(XS − X̄S)‖vec(1) + ‖PT̄⊥(XL − X̄L)‖∗
)

for all (XS , XL) ∈ R
m×n × R

m×n.

Proof. Let Ω̄ := Ω(X̄S), T̄ := T (X̄L), ∆S := XS − X̄S , and ∆L : XL − X̄L. For any subgradient G ∈
∂XS

(λ‖X̄S‖vec(1)), we have G−Q = PΩ̄(G) + PΩ̄⊥(G)− PΩ̄(Q)−PΩ̄⊥(Q) = PΩ̄⊤(G)− PΩ̄⊤(Q). Therefore

λ‖X̄S +∆S‖vec(1) − λ‖X̄S‖vec(1) − 〈Q,∆S〉
≥ sup{〈G,∆S〉 − 〈Q,∆S〉 : G ∈ ∂XS

(λ‖X̄S‖vec(1))}
≥ sup{〈G−Q,∆S〉 : G ∈ ∂XS

(λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G) − PΩ̄⊥(Q),∆S〉 : G ∈ ∂XS

(λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G) − PΩ̄⊥(Q),PΩ̄⊥(∆S)〉 : G ∈ ∂XS

(λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G),PΩ̄⊥ (∆S)〉 − 〈PΩ̄⊥(Q),PΩ̄⊥(∆S)〉 : G ∈ ∂XS

(λ‖X̄S‖vec(1))}
= λ‖PΩ̄⊥(∆S)‖vec(1) − 〈PΩ̄⊥(Q),PΩ̄⊥(∆S)〉
≥ λ‖PΩ̄⊥(∆S)‖vec(1) − ‖PΩ̄⊥(Q)‖vec(∞)‖PΩ̄⊥(∆S)‖vec(1)
≥ λ(1 − 1/c)‖PΩ̄⊥(∆S)‖vec(1)

where the second-to-last inequality uses the duality of ‖ · ‖vec(1) and ‖ · ‖vec(∞) and Proposition 3. Similarly,

‖X̄L −∆L‖∗ − ‖X̄L‖∗ − 〈Q,∆L〉 ≥ (1 − 1/c)‖PT̄⊥(∆L)‖∗

by noting the duality of ‖ · ‖∗ and ‖ · ‖2→2. Combining these gives the desired inequality.

4 Rank-sparsity incoherence

Throughout this section, we fix a target (X̄S , X̄L) ∈ R
m×n × R

m×n, and let Ω̄ := Ω(X̄S) and T̄ := T (X̄L).
Also let Ū and V̄ be, respectively, matrices of the left and right singular vectors of X̄L corresponding to
non-zero singular values. Recall the following structural properties of X̄S and X̄L:

α(ρ) := ‖ sign(X̄S)‖♯(ρ) = max{ρ‖ sign(X̄S)‖1→1, ρ−1‖ sign(X̄S)‖∞→∞};
β(ρ) := ρ−1‖ŪŪ⊤‖vec(∞) + ρ‖V̄ V̄ ⊤‖vec(∞) + ‖Ū‖2→∞‖V̄ ‖2→∞;

γ := ‖ orth(X̄L)‖vec(∞) = ‖Ū V̄ ⊤‖vec(∞).

The parameter ρ is a balancing parameter to handle disparity between row and column dimensions. The
quantity α(ρ) is the maximum number of non-zero entries in any single row or column. The quantities β(ρ)
and γ measure the coherence of the singular vectors of X̄L, that is, the alignment of the singular vectors
with the coordinate bases. For instance, under the conditions of Proposition 1, we have (with ρ =

√

n/m)

α(ρ) ≤ c1
√
mn, β (ρ) ≤ 3c2 rank(X̄L)√

mn
and γ ≤ c2 rank(X̄L)√

mn

for some constants c1 and c2.
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4.1 Operator norms of projection operators

We show that under the condition infρ>0 α(ρ)β(ρ) < 1, the pair (X̄S , X̄L) is identifiable from its sum
X̄S + X̄L (Theorem 1). This is achieved by proving that the composition of projection operators PΩ̄ and PT̄

is a contraction as per Lemma 1, which in turn implies that Ω̄ ∩ T̄ = {0}.
The following two lemmas bound the projection operators PΩ̄ and PT̄ in complementary norms.

Lemma 7. For any M ∈ R
m×n and p ∈ {1,∞}, we have

‖PΩ̄(M)‖p→p ≤ ‖ sign(X̄S)‖p→p‖M‖vec(∞).

This implies, for all ρ > 0,
‖PΩ̄‖vec(∞)→♯(ρ) ≤ α(ρ).

Proof. Define s(XS) ∈ {0, 1}m×n to be the entry-wise absolute value of sign(XS). We have

‖PΩ̄(M)‖p→p = max{‖PΩ̄(M)v‖p : ‖v‖p ≤ 1}
≤ ‖PΩ̄(M)‖vec(∞) max{‖s(PΩ̄(M))v‖p : ‖v‖p ≤ 1}
≤ ‖M‖vec(∞) max{‖s(X̄S)v‖p : ‖v‖p ≤ 1}
= ‖M‖vec(∞)‖ sign(X̄S)‖p→p.

The second part follows from the definitions of ‖ · ‖♯(ρ) and α(ρ).

Lemma 8. For any M ∈ R
m×n, we have

‖PT̄ (M)‖vec(∞) ≤ ‖Ū Ū⊤‖vec(∞)‖M‖1→1 + ‖V̄ V̄ ⊤‖vec(∞)‖M‖∞→∞ + ‖Ū‖2→∞‖V̄ ‖2→∞‖M‖2→2.

This implies, for all ρ > 0,
‖PT̄ ‖♯(ρ)→vec(∞) ≤ β(ρ).

Proof. We have ‖PT̄ (M)‖vec(∞) = ‖Ū Ū⊤M+MV̄ V̄ ⊤−ŪŪ⊤MV̄ V̄ ⊤‖vec(∞) ≤ ‖ŪŪ⊤M‖vec(∞)+‖MV̄ V̄ ⊤‖vec(∞)+

‖ŪŪ⊤MV̄ V̄ ⊤‖vec(∞) by the triangle inequality. The bounds for each term now follow from the definitions:

‖ŪŪ⊤M‖vec(∞) = max
i

‖M⊤ŪŪ⊤ei‖∞

≤ ‖M⊤‖∞→∞ max
i

‖ŪŪ⊤ei‖∞

= ‖M‖1→1‖Ū Ū⊤‖vec(∞);

‖MV̄ V̄ ⊤‖vec(∞) = max
j

‖MV̄ V̄ ⊤ej‖∞

≤ ‖M‖∞→∞max
j

‖V̄ V̄ ⊤ej‖∞

= ‖M‖∞→∞‖V̄ V̄ ‖vec(∞);

and

‖ŪŪ⊤MV̄ V̄ ⊤‖vec(∞) = max
i,j

|e⊤i Ū(Ū⊤MV̄ )V̄ ⊤ej |

≤ max
i,j

‖Ū⊤ei‖2‖Ū⊤MV̄ ‖2→2‖V̄ ⊤ej‖2 (Cauchy-Schwarz)

≤ ‖M‖2→2‖Ū‖2→∞‖V̄ ‖2→∞

≤ ‖M‖♯(ρ)‖Ū‖2→∞‖V̄ ‖2→∞ (Lemma 2).

The second part now follows the definition of β(ρ).
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Now we show that the composition of PΩ̄ and PT̄ gives a contraction under the certain norms and their
duals.

Lemma 9. For all ρ > 0,

1. ‖PΩ̄ ◦ PT̄ ‖♯(ρ)→♯(ρ) ≤ α(ρ)β(ρ);

2. ‖PT̄ ◦ PΩ̄‖vec(∞)→vec(∞) ≤ α(ρ)β(ρ);

Proof. Immediate from Lemma 7 and Lemma 8.

Lemma 10. For all ρ > 0,

1. ‖PT̄ ◦ PΩ̄‖♭(ρ)→♭(ρ) ≤ α(ρ)β(ρ);

2. ‖PΩ̄ ◦ PT̄ ‖vec(1)→vec(1) ≤ α(ρ)β(ρ).

Proof. First note that (PT̄ ◦ PΩ̄)
∗ = P∗

Ω̄
◦ P∗

T̄
= PΩ̄ ◦ PT̄ because PΩ̄ and PT̄ are self-adjoint, and similarly

(PΩ̄ ◦ PT̄ )
∗ = PT̄ ◦ PΩ̄. Now the claim follows by Proposition 3 and Lemma 9, using the facts that ‖ · ‖♭(ρ)

is dual to ‖ · ‖♯(ρ) and that ‖ · ‖vec(1) is dual to ‖ · ‖vec(∞).

Note that Lemma 1 is encompassed by Lemma 10. Another consequence of these contraction properties is
the following uncertainty principle, analogous to one stated by Chandrasekaran et al. (2009), which effectively
states that a matrix X cannot have both ‖ sign(X)‖♯(ρ) and ‖ orth(X)‖vec(∞) simultaneously small.

Theorem 4. If X = X̄S = X̄L 6= 0, then infρ>0 α(ρ)β(ρ) ≥ 1.

Proof. Note that the non-zero element X lives in Ω̄ ∩ T̄ , so we get the conclusion by the contrapositive of
Theorem 1.

4.2 Dual certificate

The incoherence properties allow us to construct an approximate dual certificate (QΩ̄, QT̄ ) ∈ Ω̄× T̄ that is
central to the analysis of the optimization problems (1) and (2).

The certificate is constructed as the solution to the linear system
{

PΩ̄(QΩ̄ +QT̄ + µ−1E) = λ sign(X̄S)
PT̄ (QΩ̄ +QT̄ + µ−1E) = orth(X̄L)

for some matrix E ∈ R
m×n; this can be equivalently written as

[

I PΩ̄

PT̄ I

] [

QΩ̄

QT̄

]

=

[

λ sign(X̄S)− µ−1PΩ̄(E)
orth(X̄L)− µ−1PT̄ (E)

]

.

We show the existence of the dual certificate (QΩ̄, QT̄ ) under the conditions (3), (4), and (5) relative to
an arbitrary matrix E. Recall that the recovery guarantees for the constrained formulation requires the
conditions with E = 0, while the guarantees for the regularized formulation takes E = Y − (X̄S + X̄L).

Theorem 5. Pick any c > 1, ρ > 0, and E ∈ R
m×n. Let k̄ := | supp(X̄S)| and r̄ := rank(X̄L). Let

ǫ2→2 := ‖E‖2→2

ǫvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞).

If the following conditions hold:

α(ρ)β(ρ) < 1 (13)

λ ≤ (1− α(ρ)β(ρ))(1 − c · µ−1ǫ2→2)− c · α(ρ)µ−1ǫvec(∞) − c · α(ρ)γ
c · α(ρ) (14)

λ ≥ c · γ + µ−1(2− α(ρ)β(ρ))ǫvec(∞)

1− α(ρ)β(ρ) − c · α(ρ)β(ρ) > 0 (15)
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(these are a restatement of (3), (4), and (5)), then

QΩ̄ := (I − PΩ̄ ◦ PT̄ )
−1
(

λ sign(X̄S)− PΩ̄(orth(X̄L))− µ−1(PΩ̄ ◦ PT̄⊥)(E)
)

∈ Ω̄ and

QT̄ := (I − PT̄ ◦ PΩ̄)
−1
(

orth(X̄L)− λPT̄ (sign(X̄S))− µ−1(PT̄ ◦ PΩ̄⊥)(E)
)

∈ T̄

are well-defined and satisfy
PΩ̄(QΩ̄ +QT̄ + µ−1E) = λ sign(X̄S)
PT̄ (QΩ̄ +QT̄ + µ−1E) = orth(X̄L)

and
‖PΩ̄⊥(QΩ̄ +QT̄ + µ−1E)‖vec(∞) ≤ λ/c
‖PT̄⊥(QΩ̄ +QT̄ + µ−1E)‖2→2 ≤ 1/c.

Moreover,

‖QΩ̄‖2→2 ≤ α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

‖QT̄ ‖2→2 ≤ 2α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

+ 1 + 2µ−1ǫ2→2

‖QT̄‖∗ ≤ 2r̄‖QT̄‖2→2

‖QT̄ ‖vec(∞) ≤
1

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

‖QΩ̄‖vec(∞) ≤
2

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

‖QΩ̄‖vec(1) ≤ k̄‖QΩ̄‖vec(∞)

‖QΩ̄ +QT̄ ‖2vec(2) ≤ λ‖QΩ̄‖vec(1)
(

1 + µ−1λ−1ǫvec(∞)

)

+ ‖QT̄ ‖∗
(

1 + 2µ−1ǫ2→2

)

.

Remark 1. The dual certificate constitutes an approximate subgradient in the sense that QΩ̄ +QT̄ + µ−1E
is a subgradient of both λ‖XS‖vec(1) at XS = X̄S , and ‖XL‖∗ at XL = X̄L.

Proof. Under the condition (13), we have α(ρ)β(ρ) < 1, and therefore Lemma 9 and Lemma 4 imply that
the operators I − PΩ̄ ◦ PT̄ and I − PT̄ ◦ PΩ̄ are invertible and satisfy

max
{

‖(I − PΩ̄ ◦ PT̄ )
−1‖♯(ρ)→♯(ρ), ‖(I − PT̄ ◦ PΩ̄)

−1‖vec(∞)→vec(∞)

}

≤ 1

1− α(ρ)β(ρ)
.

Thus QΩ̄ and QT̄ are well-defined. We can bound ‖QΩ̄‖2→2 as

‖QΩ̄‖2→2 ≤ ‖QΩ̄‖♯(ρ) (Lemma 2)

=
∥

∥(I − PΩ̄ ◦ PT̄ )
−1
(

λ sign(X̄S)− PΩ̄(orth(X̄L))− µ−1(PΩ̄ ◦ PT̄⊥)(E)
)∥

∥

♯(ρ)

≤ 1

1− α(ρ)β(ρ)
·
∥

∥λ sign(X̄S)− PΩ̄(orth(X̄L))− µ−1(PΩ̄ ◦ PT̄⊥)(E)
∥

∥

♯(ρ)

≤ 1

1− α(ρ)β(ρ)
·
(

λ‖ sign(X̄S)‖♯(ρ) + ‖PΩ̄(orth(X̄L))‖♯(ρ) + µ−1‖(PΩ̄ ◦ PT̄⊥)(E)‖♯(ρ)
)

≤ α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1‖PT̄⊥(E)‖vec(∞)

)

(Lemma 7)

≤ α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

.
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Above, we have used the bound ‖PT̄⊥(E)‖vec(∞) = ‖E − PT̄ (E)‖vec(∞) ≤ ǫvec(∞). Therefore,

‖PT̄⊥(QΩ̄ + µ−1E)‖2→2 ≤ ‖(I − Ū Ū⊤)QΩ̄(I − V̄ V̄ ⊤)‖2→2 + µ−1‖PT̄⊥(E)‖2→2

≤ ‖QΩ̄‖2→2 + µ−1ǫ2→2

≤ α(ρ)

1− α(ρ)β(ρ)
· (λ+ γ + µ−1ǫvec(∞)) + µ−1ǫ2→2.

The condition (14) now implies that this quantity is at most 1/c.
Now we bound ‖QT̄‖vec(∞) as

‖QT̄‖vec(∞) =
∥

∥(I − PT̄ ◦ PΩ̄)
−1
(

orth(X̄L)− λPT̄ (sign(X̄S)− µ−1(PT̄ ◦ PΩ̄⊥)(E)
)
∥

∥

vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
∥

∥orth(X̄L)− λPT̄ (sign(X̄S)− µ−1(PT̄ ◦ PΩ̄⊥)(E)
∥

∥

vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(

‖ orth(X̄L)‖vec(∞) + λ‖PT̄ (sign(X̄S))‖vec(∞) + µ−1‖(PT̄ ◦ PΩ̄⊥)(E)‖vec(∞)

)

≤ 1

1− α(ρ)β(ρ)
·
(

γ + λα(ρ)β(ρ) + µ−1ǫvec(∞)

)

(Lemma 9).

Above, we have used the bound ‖(PT̄ ◦PΩ̄⊥)(E)‖vec(∞) = ‖PT̄ (E)−(PT̄ ◦PΩ̄)(E)‖vec(∞) ≤ ‖PT̄ (E)‖vec(∞)+
α(ρ)β(ρ)‖E‖vec(∞) ≤ ǫvec(∞). Therefore,

‖PΩ̄⊥(QT̄ + µ−1E)‖vec(∞) ≤ ‖QT̄‖vec(∞) + µ−1‖PΩ̄⊥(E)‖vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(

γ + λα(ρ)β(ρ) + µ−1ǫvec(∞)

)

+ µ−1ǫvec(∞).

The condition (15) now implies that this quantity is at most λ/c.
We also have

‖QT̄‖2→2 = ‖PT̄ (QΩ̄ + µ−1E)− orth(X̄L)‖2→2

≤ 2α(ρ)

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

+ 1 + 2µ−1ǫ2→2

since ‖PT̄ (QΩ̄)‖2→2 ≤ 2‖QΩ̄‖2→2 and ‖PT̄ (E)‖2→2 ≤ 2ǫ2→2 by Lemma 5, and

‖QΩ̄‖vec(∞) = ‖PΩ̄(QT̄ + µ−1E)− λ sign(X̄S)‖vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(

λ+ γ + µ−1ǫvec(∞)

)

+ λ+ µ−1ǫvec(∞).

The bounds on ‖QT̄ ‖∗ and ‖QΩ̄‖vec(1) follow from the facts that rank(QT̄ ) ≤ 2r̄ and ‖ supp(QΩ̄)‖ ≤ k̄.
Finally,

‖QΩ̄ +QT̄ ‖2vec(2) = 〈QΩ̄,PΩ̄(QΩ̄ +QT̄ )〉+ 〈QT̄ ,PT̄ (QΩ̄ +QT̄ )〉
= 〈QΩ̄, λPΩ̄(sign(X̄S))− µ−1PΩ̄(E)〉 + 〈QT̄ ,PT̄ (orth(X̄L))− µ−1PT̄ (E)〉
≤ λ‖QΩ̄‖vec(1)

(

1 + µ−1λ−1‖PΩ̄(E)‖vec(∞)

)

+ ‖QT̄ ‖∗
(

1 + µ−1‖PT̄ (E)‖2→2

)

≤ λ‖QΩ̄‖vec(1)
(

1 + µ−1λ−1ǫvec(∞)

)

+ ‖QT̄‖∗
(

1 + 2µ−1ǫ2→2

)

.

5 Analysis of constrained formulation

Throughout this section, we fix a target decomposition (X̄S , X̄L) that satisfies the constraints of (1), and let
(X̂S , X̂L) be the optimal solution to (1). Let ∆S := X̂S − X̄S and ∆L := X̂L− X̄L. We show that under the
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conditions of Theorem 5 with E = 0 and appropriately chosen λ, solving (1) accurately recovers the target
decomposition (X̄S , X̄L).

We decompose the errors into symmetric and antisymmetric parts ∆avg := (∆S + ∆L)/2 and ∆mid :=
(∆S − ∆L)/2. The constraints allow us to easily bound ∆avg, so most of the analysis involves bounding
∆mid in terms of ∆avg.

Lemma 11. ‖∆avg‖vec(1) ≤ ǫvec(1) and ‖∆avg‖∗ ≤ ǫ∗.

Proof. Since both (X̂S , X̂L) and (X̄S , X̄L) as feasible solutions to (1), we have for ♦ ∈ {vec(1), ∗},

‖∆avg‖♦ = 1/2‖∆S +∆L‖♦
= 1/2‖(X̂S + X̂L − Y )− (X̄S + X̄L − Y )‖♦
≤ 1/2

(

‖X̂S + X̂L − Y ‖♦ + ‖X̄S + X̄L − Y ‖♦
)

≤ ǫ♦.

Lemma 12. Assume the conditions of Theorem 5 hold with E = 0. We have

λ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PT̄⊥(∆mid)‖∗ ≤ (1 − 1/c)−1
(

λ‖∆avg‖vec(1) + ‖∆avg‖∗
)

.

Proof. Let Q := QΩ̄ + QT̄ be the dual certificate guaranteed by Theorem 5. Note that Q satisfies the
conditions of Lemma 6, so we have

λ‖X̄S +∆mid‖vec(1) + ‖X̄L −∆mid‖∗ − λ‖X̄S‖vec(1) − ‖X̄L‖∗
≥ (1− 1/c)

(

λ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PT̄⊥(∆mid)‖∗
)

.

Using the triangle inequality, we have

λ‖X̂S‖vec(1) + ‖X̂L‖∗ = λ‖X̄S +∆S‖vec(1) + ‖X̄L +∆L‖∗
= λ‖X̄S +∆mid +∆avg‖vec(1) + ‖X̄L −∆mid +∆avg‖∗
≥ λ‖X̄S +∆mid‖vec(1) − λ‖∆avg‖vec(1) + ‖X̄L −∆mid‖∗ − ‖∆avg‖∗.

Now using the fact that λ‖X̂S‖vec(1) + ‖X̂L‖∗ ≤ λ‖X̄S‖vec(1) + ‖X̄L‖∗ gives the claim.

Lemma 13. Let k̄ := | supp(X̄S)|. Assume the conditions of Theorem 5 hold with E = 0. We have

‖PΩ̄(∆mid)‖vec(1) ≤
(1− 1/c)−1

1− α(ρ)β(ρ)
· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ).

Proof. Because ∆mid = PΩ̄(∆mid) + PΩ̄⊥(∆mid) = PT̄ (∆mid) + PT̄⊥(∆mid), we have the equation

PΩ̄(∆mid)− PT̄ (∆mid) = −PΩ̄⊥(∆mid) + PT̄⊥(∆mid).

Separately applying PΩ̄ and PT̄ to both sides gives
[

I PΩ̄

PT̄ I

] [

PΩ̄(∆mid)
−PT̄ (∆mid)

]

=

[

(PΩ̄ ◦ PT̄⊥)(∆mid)
−(PT̄ ◦ PΩ̄⊥)(∆mid)

]

.

Under the condition α(ρ)β(ρ) < 1, Lemma 10 and Lemma 4 imply that

‖(I − PΩ̄ ◦ PT̄ )
−1‖vec(1)→vec(1) ≤

1

1− α(ρ)β(ρ)

and that

PΩ̄(∆mid) = (I − PΩ̄ ◦ PT̄ )
−1 ((PΩ̄ ◦ PT̄⊥)(∆mid)− (PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆mid)) .
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Therefore

‖PΩ̄(∆mid)‖vec(1)

≤ 1

1− α(ρ)β(ρ)
·
(

‖(PΩ̄ ◦ PT̄⊥)(∆mid)‖vec(1) + ‖(PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆mid)‖vec(1)
)

≤ 1

1− α(ρ)β(ρ)
·
(√

k̄ · ‖PT̄⊥(∆mid)‖vec(2) + α(ρ)β(ρ) · ‖PΩ̄⊥(∆mid)‖vec(1)
)

(Lemma 10)

≤ 1

1− α(ρ)β(ρ)
·
(
√

k̄ · ‖PT̄⊥(∆mid)‖∗ + α(ρ)β(ρ) · ‖PΩ̄⊥(∆mid)‖vec(1)
)

≤ (1− 1/c)−1

1− α(ρ)β(ρ)
·max

{√

k̄, α(ρ)β(ρ)/λ
}

· (λ‖∆avg‖vec(1) + ‖∆avg‖∗) (Lemma 12)

≤ (1− 1/c)−1

1− α(ρ)β(ρ)
· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ)

where the last inequality uses the facts k̄ ≤ α(ρ)2, α(ρ)β(ρ) < 1, and λα(ρ) ≤ 1.

We now prove Theorem 2, which we restate here for convenience.

Theorem 6 (Theorem 2 restated). Assume the conditions of Theorem 5 hold with E = 0. We have

max{‖∆S‖vec(1), ‖∆L‖vec(1)}

≤
(

1 + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)

)

· ǫvec(1) + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)
· ǫ∗/λ.

If, in addition for some b ≥ ‖X̄L‖vec(∞), either:

• the optimization problem (1) is augmented with the constraint ‖XL‖vec(∞) ≤ b, or

• X̂L is post-processed by replacing [X̂L]i,j with min{max{[X̂L]i,j ,−b}, b} for all i, j,

then we also have

‖∆L‖vec(2) ≤ min
{

‖∆L‖vec(1),
√

2b‖∆L‖vec(1)
}

.

Proof. First note that since ∆S = ∆avg+∆mid and ∆L = ∆avg−∆mid, we have max{‖∆S‖vec(1), ‖∆L‖vec(1)} ≤
‖∆avg‖vec(1) + ‖∆mid‖vec(1). We can bound ‖∆mid‖vec(1) as

‖∆mid‖vec(1) ≤ ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PΩ̄(∆mid)‖vec(1)

≤ (1− 1/c)−1 ·
(

1 +
1

1− α(ρ)β(ρ)

)

· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ)

by Lemma 12 and Lemma 13. The bounds on ‖∆S‖vec(1) and ‖∆L‖vec(1) follow from the bounds on
‖∆mid‖vec(1), ‖∆avg‖vec(1), and ‖∆avg‖∗ (from Lemma 11).

If the constraint ‖XL‖vec(∞) ≤ b is added, then we can use the facts ‖∆L‖vec(∞) ≤ ‖X̂L‖vec(∞) +

‖X̄L‖vec(∞) ≤ 2b and ‖∆L‖vec(2)
√

‖∆L‖vec(∞)‖∆L‖vec(1) ≤
√

2b‖∆L‖vec(1). If X̂L is post-processed, then

(letting clip(X̂L) be the result of the post-processing) | clip(X̂L)i,j − [X̄L]i,j | ≤ |[X̂L]i,j − [X̄L]i,j | for all i, j,
so ‖ clip(X̂L)− X̄L‖vec(1) ≤ ‖∆L‖vec(1) and ‖ clip(X̂L)− X̄L‖vec(2) ≤

√

2b‖ clip(X̂L)− X̄L‖vec(1).
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6 Analysis of regularized formulation

Throughout this section, we fix a target decomposition (X̄S , X̄L) that satisfies ‖X̄S − Y ‖vec(∞) ≤ b, and

let (X̂S , X̂L) be the optimal solution to (2) augmented with the constraint ‖XS − Y ‖vec(∞) ≤ b for some

b ≥ ‖X̄S − Y ‖vec(∞) (b = ∞ is allowed). Let ∆S := X̂S − X̄S and ∆L := X̂L − X̄L. We show that under the
conditions of Theorem 5 with E = Y − (X̄S + X̄L) and appropriately chosen λ and µ, solving (2) accurately
recovers the target decomposition (X̄S , X̄L).

Lemma 14. There exists GS , GL, HS ∈ R
m×n such that

1. µ−1(X̂S + X̂L − Y ) + λGS +H = 0; ‖GS‖vec(∞) ≤ 1;

2. µ−1(X̂S + X̂L − Y ) + λGL = 0; ‖GL‖2→2 ≤ 1;

3. [HS ]i,j [∆S ]i,j ≥ 0 ∀i, j .

Proof. We express the constraint ‖XS − Y ‖vec(∞) ≤ b in (2) as 2mn constraints [XS ]i,j − Yi,j − b ≤ 0 and
−[XS ]i,j + Yi,j − b ≤ 0 for all i, j. Now the corresponding Lagrangian is

1

2µ
‖XS +XL − Y ‖2vec(2) + λ‖XS‖vec(1) + ‖XL‖∗ + 〈Λ+, XS − Y − b1m,n〉+ 〈Λ−,−XS + Y − b1m,n〉

where Λ+,Λ− ≥ 0 and 1m,n is the all-ones m×n matrix. First-order optimality conditions imply that there

exists a subgradient GS of ‖XS‖vec(1) at XS = X̂S and a subgradient GL of ‖XL‖∗ at XL = X̂L such that

µ−1(X̂S + X̂L − Y ) + λGS + (Λ+ − Λ−) = 0 and µ−1(X̂S + X̂L − Y ) +GL = 0.

Now since ‖X̄S − Y ‖vec(∞) ≤ b, we have [X̄S ]i,j ≤ Yi,j + b and −[X̄S]i,j ≤ −Yi,j + b. By complementary

slackness, if Λ+
i,j > 0, then [X̂S ]i,j − Yi,j − b = 0, which means [X̂S ]i,j − [X̄S ]i,j ≥ [X̂S ]i,j − (Yi,j + b) = 0. So

Λ+
i,j [∆S ]i,j ≥ 0. Similarly, if Λ−

i,j > 0, then [X̂S ]i,j− [X̄S]i,j ≤ 0. So Λ−
i,j [∆S ]i,j ≤ 0. Therefore H := Λ+−Λ−

satisfies Hi,j [∆S ]i,j ≥ 0.

Lemma 15. Assume the conditions of Theorem 5 hold with E = Y − (X̄S + X̄L), and let (QΩ̄, QT̄ ) be the
dual certificate from the conclusion. We have

λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗ ≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2.

Proof. Let Q := QΩ̄ +QT̄ and ∆ := ∆S +∆L. Since Q+ µ−1E satisfies the conditions of Lemma 6,

(1− 1/c)
(

λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗
)

≤ (λ‖X̂S‖vec(1) + ‖X̂L‖∗)− (λ‖X̄S‖vec(1) + ‖X̄L‖∗)− 〈Q + µ−1E,∆S +∆L〉.

Furthermore, by the optimality of (X̂S , X̂L),

(λ‖X̂S‖vec(1) + ‖X̂L‖∗)− (λ‖X̄S‖vec(1) + ‖X̄L‖∗) ≤
1

2µ
‖X̄S + X̄L − Y ‖2vec(2) −

1

2µ
‖X̂S + X̂L − Y ‖2vec(2)

=
1

2µ
‖E‖2vec(2) −

1

2µ
‖∆S +∆L − E‖2vec(2)

=
1

2µ
(2〈E,∆〉 − 〈∆,∆〉).

Combining the inequalities gives

(1− 1/c)
(

λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗
)

≤ −〈Q,∆〉 − 1

2µ
〈∆,∆〉 ≤ ‖Q‖2vec(2)µ/2

where the last inequality follows by taking the maximum value over ∆ at ∆ = −µQ.
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Now we prove Theorem 3, restated below (with an additional result for ‖∆L‖♭(ρ)).

Theorem 7 (Theorem 3 restated). Let k̄ := | supp(X̄S)| and r̄ := rank(X̄L). Assume the conditions of
Theorem 5 hold with E = Y − (X̄S + X̄L), and let (QΩ̄, QT̄ ) be the dual certificate from the conclusion. We
have

‖∆S‖vec(1) ≤
λ−1(1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ+ λk̄µ+ 2

√
k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

1− α(ρ)β(ρ)

‖∆S‖vec(2) ≤ min
{

‖∆S‖vec(1),
√

2b‖∆S‖vec(1)
}

‖∆L‖♭(ρ) ≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2 + min
{

β(ρ)‖∆S‖vec(1),
√
2r̄‖∆S‖vec(2)

}

+ ‖PT̄ (E)‖∗ + 2r̄µ

‖∆L‖∗ ≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2 +
√
2r̄‖∆S‖vec(2) + ‖PT̄ (E)‖∗ + 2r̄µ.

Proof. From Lemma 14, we obtain GS , GL, HS ∈ R
m×n and the following equations:

µ−1(PΩ̄(∆S) + PΩ̄(∆L)− PΩ̄(E)) + PΩ̄(HS) = −λPΩ̄(GS) (16)

µ−1(PT̄ (∆S) + PT̄ (∆L)− PT̄ (E)) = −PT̄ (GL) (17)

µ−1((PΩ̄ ◦ PT̄ )(∆S) + (PΩ̄ ◦ PT̄ )(∆L)− (PΩ̄ ◦ PT̄ )(E)) = −(PΩ̄ ◦ PT̄ )(GL). (18)

Subtracting (18) from (16) gives

µ−1(PΩ̄(∆S)− (PΩ̄ ◦ PT̄ ◦ PΩ̄)(∆S)− (PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆S)− (PΩ̄ ◦ PT̄⊥)(∆L)) + PΩ̄(HS)

= −λPΩ̄(GS) + (PΩ̄ ◦ PT̄ )(GL) + µ−1(PΩ̄ ◦ PT̄⊥)(E).

Moreover, we have 〈sign(∆S),PΩ̄(∆S)〉 = ‖PΩ̄(∆S)‖vec(1) and 〈sign(∆S),PΩ̄(HS)〉 = ‖PΩ̄(HS)‖vec(1), so
taking inner products with sign(∆S) on both sides of the equation gives

µ−1‖PΩ̄(∆S)‖vec(1) + ‖PΩ̄(HS)‖vec(1)
≤ µ−1‖(PΩ̄ ◦ PT̄ ◦ PΩ̄)(∆S)‖vec(1) + µ−1‖(PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆S)‖vec(1) + µ−1‖(PΩ̄ ◦ PT̄⊥)(∆L)‖vec(1)

+ λ‖PΩ̄(GS)‖vec(1) + ‖(PΩ̄ ◦ PT̄ )(GL)‖vec(1) + µ−1‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(1)
≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1) + µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1) + µ−1

√

k̄‖PT̄⊥(∆L)‖vec(2)
+ λk̄ +

√

k̄‖PT̄ (GL)‖vec(2) + µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1) + µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1) + µ−1
√

k̄‖PT̄⊥(∆L)‖vec(2)
+ λk̄ + 2

√

k̄r̄‖GL‖2→2 + µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1) + µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1) + µ−1
√

k̄‖PT̄⊥(∆L)‖vec(2)
+ λk̄ + 2

√

k̄r̄ + µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞).

The second and third inequalities above follow from Lemma 5 and Lemma 10, and the fourth inequality uses
the fact that ‖GL‖2→2 ≤ 1. Rearranging the inequality and applying Lemma 15 gives

(1 − α(ρ)β(ρ))‖PΩ̄(∆S)‖vec(1)
≤ α(ρ)β(ρ)‖PΩ̄⊥ (∆S)‖vec(1) +

√

k̄‖PT̄⊥(∆L)‖vec(2) + λk̄µ+ 2
√

k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ max{α(ρ)β(ρ)/λ,
√

k̄}(1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2 + λk̄µ+ 2
√

k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ λ−1(1− 1/c)−1‖QΩ̄ +QT̄‖2vec(2)µ/2 + λk̄µ+ 2
√

k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)
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since k̄ ≤ α(ρ)2, α(ρ)β(ρ) < 1, and λα(ρ) ≤ 1. Now we combine this with ‖∆S‖vec(1) ≤ ‖PΩ̄⊥(∆S)‖vec(1) +
‖PΩ̄(∆S)‖vec(1) and Lemma 15 to get the first bound.

For the second bound, we use the facts ‖∆S‖vec(∞) ≤ ‖X̂S − Y ‖vec(∞) + ‖X̄S − Y ‖vec(∞) ≤ 2b and

‖∆S‖vec(2) ≤
√

‖∆S‖vec(1)‖∆S‖vec(∞) ≤
√

2b‖∆S‖vec(1).
For the third and fourth bounds, we obtain from (17)

‖PT̄ (∆L)‖♭(ρ) ≤ ‖PT̄ (∆S)‖♭(ρ) + ‖PT̄ (E)‖♭(ρ) + µ‖PT̄ (GL)‖♭(ρ)
≤ ‖PT̄ ‖vec(1)→♭(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗ (Lemma 3)

= ‖P∗
T̄ ‖♯(ρ)→vec(∞)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗ (Proposition 3)

≤ β(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗ (Lemma 8)

≤ β(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + 2r̄µ (Lemma 5 and ‖GL‖2→2 ≤ 1)

and

‖PT̄ (∆L)‖∗ ≤ ‖PT̄ (∆S)‖∗ + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗
≤

√
2r̄‖∆S‖vec(2) + ‖PT̄ (E)‖∗ + 2r̄µ (Lemma 5 and ‖GL‖2→2 ≤ 1).

Now we combine these with

‖∆L‖♭(ρ) ≤ ‖PT̄⊥(∆L)‖♭(ρ) + ‖PT̄ (∆L)‖♭(ρ)
≤ ‖PT̄⊥(∆L)‖∗ +min{‖PT̄ (∆L)‖∗, ‖PT̄ (∆L)‖♭(ρ)} (Lemma 3)

‖∆L‖∗ ≤ ‖PT̄⊥(∆L)‖∗ + ‖PT̄ (∆L)‖∗

and Lemma 15.

Note that we have an error bound for ∆L in ‖ · ‖♭(ρ) norm, which can be significantly smaller than the
bound for the trace norm of ∆L.
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