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Abstract

We compare the risk of ridge regression to a simple variant of ordinary least squares, in
which one simply projects the data onto a finite dimensional subspace (as specified by a
principal component analysis) and then performs an ordinary (un-regularized) least squares
regression in this subspace. This note shows that the risk of this ordinary least squares
method (PCA-OLS) is within a constant factor (namely 4) of the risk of ridge regression
(RR).
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1. Introduction

Consider the fixed design setting where we have a set of n vectors X = {Xi}, and let X
denote the matrix where the i

th row of X is Xi. The observed label vector is Y ∈ R
n.

Suppose that:

Y = Xβ + ǫ,

where ǫ is independent noise in each coordinate, with the variance of ǫi being σ2.

The objective is to learn E[Y ] = Xβ. The expected loss of a vector β estimator is:

L(β) =
1

n
EY[‖Y −Xβ‖2],
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Let β̂ be an estimator of β (constructed with a sample Y ). Denoting

Σ :=
1

n
X

T
X,

we have that the risk (i.e., expected excess loss) is:

Risk(β̂) := Eβ̂[L(β̂)− L(β)] = Eβ̂‖β̂ − β‖2
Σ
,

where ‖x‖Σ = x⊤Σx and where the expectation is with respect to the randomness in Y .
We show that a simple variant of ordinary (un-regularized) least squares always compares

favorably to ridge regression (as measured by the risk). This observation is based on the
following bias variance decomposition:

Risk(β̂) = E‖β̂ − β̄‖2
Σ

︸ ︷︷ ︸

Variance

+ ‖β̄ − β‖2
Σ

︸ ︷︷ ︸

Prediction Bias

, (1)

where β̄ = E[β̂].

1.1 The Risk of Ridge Regression (RR)

Ridge regression or Tikhonov Regularization (Tikhonov, 1963) penalizes the ℓ2 norm of
a parameter vector β and “shrinks” it towards zero, penalizing large values more. The
estimator is:

β̂λ = argmin
β

{‖Y −Xβ‖2 + λ‖β‖2}.

The closed form estimate is then:

β̂λ = (Σ+ λI)−1

(
1

n
X

TY

)

.

Note that
β̂0 = β̂λ=0 = argmin

β
{‖Y −Xβ‖2},

is the ordinary least squares estimator.
Without loss of generality, rotate X such that:

Σ = diag(λ1, λ2, . . . , λp),

where the λi’s are ordered in decreasing order.
To see the nature of this shrinkage observe that:

[β̂λ]j :=
λj

λj + λ
[β̂0]j ,

where β̂0 is the ordinary least squares estimator.
Using the bias-variance decomposition, (Equation 1), we have that:

Lemma 1

Risk(β̂λ) =
σ2

n

∑

j

(
λj

λj + λ

)2

+
∑

j

β2
j

λj

(1 +
λj

λ )2
.

The proof is straightforward and is provided in the appendix.
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2. Ordinary Least Squares with PCA (PCA-OLS)

Now let us construct a simple estimator based on λ. Note that our rotated coordinate system
where Σ is equal to diag(λ1, λ2, . . . , λp) corresponds the PCA coordinate system.

Consider the following ordinary least squares estimator on the “top” PCA subspace —
it uses the least squares estimate on coordinate j if λj ≥ λ and 0 otherwise

[β̂PCA,λ]j =

{

[β̂0]j if λj ≥ λ

0 otherwise
.

The following claim shows this estimator compares favorably to the ridge estimator (for
every λ)– no matter how the λ is chosen e.g., using cross validation or any other strategy.

Our main theorem (Theorem 2) bounds the Risk Ratio/Risk Inflation1 of the PCA-OLS
and the RR estimators.

Theorem 2 (Bounded Risk Inflation) For all λ ≥ 0, we have that:

0 ≤ Risk(β̂PCA,λ)

Risk(β̂λ)
≤ 4,

and the left hand inequality is tight.

Proof Using the bias variance decomposition of the risk we can write the risk as:

Risk(β̂PCA,λ) =
σ2

n

∑

j

1λj≥λ +
∑

j:λj<λ

λjβ
2
j .

The first term represents the variance and the second the bias.
The ridge regression risk is given by Lemma 1. We now show that the jth term in the

expression for the PCA risk is within a factor 4 of the jth term of the ridge regression risk.
First, let’s consider the case when λj ≥ λ, then the ratio of jth terms is:

σ2

n

σ2

n

(
λj

λj+λ

)2
+ β2

j
λj

(1+
λj

λ
)2

≤
σ2

n

σ2

n

(
λj

λj+λ

)2 =

(

1 +
λ

λj

)2

≤ 4.

Similarly, if λj < λ, the ratio of the jth terms is:

λjβ
2
j

σ2

n

(
λj

λj+λ

)2
+ β2

j
λj

(1+
λj

λ
)2

≤
λjβ

2
j

λjβ2

j

(1+
λj

λ
)2

=

(

1 +
λj

λ

)2

≤ 4.

Since, each term is within a factor of 4 the proof is complete.

It is worth noting that the converse is not true and the ridge regression estimator (RR)
can be arbitrarily worse than the PCA-OLS estimator. An example which shows that the
left hand inequality is tight is given in the Appendix.

1. Risk Inflation has also been used as a criterion for evaluating feature selection proce-
dures (Foster and George, 1994).
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3. Experiments

First, we generated synthetic data with p = 100 and varying values of n= {20, 50, 80, 110}.
The data was generated in a fixed design setting as Y = Xβ+ǫ where ǫi ∼ N (0, 1) ∀i = 1, . . . , n.
Furthermore, Xn×p ∼ MVN(0, I) where MVN(µ,Σ) is the Multivariate Normal Distribu-
tion with mean vector µ, variance-covariance matrix Σ and βj ∼ N (0, 1) ∀j = 1, . . . , p.

The results are shown in Figure 1. As can be seen, the risk ratio of PCA (PCA-OLS)
and ridge regression (RR) is never worse than 4 and often its better than 1 as dictated by
Theorem 2.

Next , we chose two real world datasets, namely USPS (n=1500, p=241) and BCI (n=400,
p=117)2.

Since we do not know the true model for these datasets, we used all the n observations
to fit an OLS regression and used it as an estimate of the true parameter β. This is a
reasonable approximation to the true parameter as we estimate the ridge regression (RR)
and PCA-OLS models on a small subset of these observations. Next we choose a random
subset of the observations, namely 0.2 × p, 0.5 × p and 0.8 × p to fit the ridge regression
(RR) and PCA-OLS models.

The results are shown in Figure 2. As can be seen, the risk ratio of PCA-OLS to ridge
regression (RR) is again within a factor of 4 and often PCA-OLS is better i.e., the ratio < 1.

4. Conclusion

We showed that the risk inflation of a particular ordinary least squares estimator (on the
“top” PCA subspace) is within a factor 4 of the ridge estimator. It turns out the converse
is not true — this PCA estimator may be arbitrarily better than the ridge one.

Appendix A.

Proof of Lemma 1.

Proof We analyze the bias-variance decomposition in Equation 1. For the variance,

EY ‖β̂λ − β̄λ‖2Σ =
∑

j

λjEY ([β̂λ]j − [β̄λ]j)
2

=
∑

j

λj

(λj + λ)2
1

n2
E

[
n∑

i=1

(Yi − E[Yi])[Xi]j

n∑

i′=1

(Y ′
i − E[Y ′

i ])[X
′
i]j

]

=
∑

j

λj

(λj + λ)2
σ2

n

n∑

i=1

V ar(Yi)[Xi]
2
j

=
∑

j

λj

(λj + λ)2
σ2

n

n∑

i=1

[Xi]
2
j

=
σ2

n

∑

j

λ2
j

(λj + λ)2
.

2. The details about the datasets can be found here: http://olivier.chapelle.cc/ssl-book/benchmarks.html.
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Figure 1: Plots showing the risk ratio as a function of λ, the regularization parameter and
n, for the synthetic dataset. p=100 in all the cases. The error bars correspond to
one standard deviation for 100 such random trials.
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Figure 2: Plots showing the risk ratio as a function of λ, the regularization parameter and
n, for two real world datasets (BCI and USPS–top to bottom).
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Similarly, for the bias,

‖β̄λ − β‖2Σ =
∑

j

λj([β̄λ]j − [β]j)
2

=
∑

j

β2
j λj

(
λj

λj + λ
− 1

)2

=
∑

j

β2
j

λj

(1 +
λj

λ )2
,

which completes the proof.

The risk for RR can be arbitrarily worse than the PCA-OLS estimator.

Consider the standard OLS setting described in Section 1 in which X is n × p matrix
and Y is a n× 1 vector.

Let X = diag(
√
1 + α, 1, . . . , 1), then Σ = X

⊤
X = diag(1+α, 1, . . . , 1) for some (α > 0)

and also choose β = [2 + α, 0, . . . , 0]. For convenience let’s also choose σ2 = n.

Then, using Lemma 1, we get the risk of RR estimator as

Risk(β̂λ) =








(
1 + α

1 + α+ λ

)2

︸ ︷︷ ︸

I

+
(p− 1)

(1 + λ)2
︸ ︷︷ ︸

II








+ (2 + α)2 × (1 + α)

(1 + 1+α
λ )2

︸ ︷︷ ︸

III

.

Let’s consider two cases

• Case 1: λ < (p− 1)1/3 − 1, then II > (p− 1)1/3.

• Case 2: λ > 1, then 1 + 1+α
λ < 2 + α, hence III > (1 + α).

Combining these two cases we get ∀λ, Risk(β̂λ) > min((p− 1)1/3, (1 +α)). If we choose
p such that p− 1 = (1 + α)3, then Risk(β̂λ) > (1 + α).

The PCA-OLS risk (From Theorem 2) is:

Risk(β̂PCA,λ) =
∑

j

1λj≥λ +
∑

j:λj<λ

λjβ
2
j .

Considering λ ∈ (1, 1+α), the first term will contribute 1 to the risk and rest everything
will be 0. So the risk of PCA-OLS is 1 and the risk ratio is

Risk(β̂PCA,λ)

Risk(β̂λ)
≤ 1

(1 + α)
.

Now, for large α, the risk ratio ≈ 0.
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