A tail inequality for quadratic forms of subgaussian random vectors

Daniel Hsu ${ }^{1}$, Sham M. Kakade ${ }^{1,2}$, and Tong Zhang ${ }^{3}$
${ }^{1}$ Microsoft Research New England
${ }^{2}$ Department of Statistics, Wharton School, University of Pennsylvania
${ }^{3}$ Department of Statistics, Rutgers University

October 14, 2011

Abstract

We prove an exponential probability tail inequality for positive semidefinite quadratic forms in a subgaussian random vector. The bound is analogous to one that holds when the vector has independent Gaussian entries.

1 Introduction

Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ is a random vector. Let $A \in \mathbb{R}^{m \times n}$ be a fixed matrix. A natural quantity that arises in many settings is the quadratic form $\|A x\|^{2}=x^{\top}\left(A^{\top} A\right) x$. Throughout $\|v\|$ denotes the Euclidean norm of a vector v, and $\|M\|$ denotes the spectral (operator) norm of a matrix M. We are interested in how close $\|A x\|^{2}$ is to its expectation.

Consider the special case where x_{1}, \ldots, x_{n} are independent standard Gaussian random variables. The following proposition provides an (upper) tail bound for $\|A x\|^{2}$.
Proposition 1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix, and let $\Sigma:=A^{\top} A$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an isotropic multivariate Gaussian random vector with mean zero. For all $t>0$,

$$
\operatorname{Pr}\left[\|A x\|^{2}>\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right] \leq e^{-t} .
$$

The proof, given in Appendix A.2, is straightforward given the rotational invariance of the multivariate Gaussian distribution, together with a tail bound for linear combinations of χ^{2} random variables due to Laurent and Massart (2000). We note that a slightly weaker form of Proposition 1 can be proved directly using Gaussian concentration (Pisier, 1989).

In this note, we consider the case where $x=\left(x_{1}, \ldots, x_{n}\right)$ is a subgaussian random vector. By this, we mean that there exists a $\sigma \geq 0$, such that for all $\alpha \in \mathbb{R}^{n}$,

$$
\mathbb{E}\left[\exp \left(\alpha^{\top} x\right)\right] \leq \exp \left(\|\alpha\|^{2} \sigma^{2} / 2\right)
$$

We provide a sharp upper tail bound for this case analogous to one that holds in the Gaussian case (indeed, the same as Proposition 1 when $\sigma=1$).

[^0]
Tail inequalities for sums of random vectors

One motivation for our main result comes from the following observations about sums of random vectors. Let a_{1}, \ldots, a_{n} be vectors in a Euclidean space, and let $A=\left[a_{1}|\cdots| a_{n}\right]$ be the matrix with a_{i} as its i th column. Consider the squared norm of the random sum

$$
\begin{equation*}
\|A x\|^{2}=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{2} \tag{1}
\end{equation*}
$$

where $x:=\left(x_{1}, \ldots, x_{n}\right)$ is a martingale difference sequence with $\mathbb{E}\left[x_{i} \mid x_{1}, \ldots, x_{i-1}\right]=0$ and $\mathbb{E}\left[x_{i}^{2} \mid x_{1}, \ldots, x_{i-1}\right]=\sigma^{2}$. Under mild boundedness assumptions on the x_{i}, the probability that the squared norm in (1) is much larger than its expectation

$$
\mathbb{E}\left[\|A x\|^{2}\right]=\sigma^{2} \sum_{i=1}^{n}\left\|a_{i}\right\|^{2}=\sigma^{2} \operatorname{tr}\left(A^{\top} A\right)
$$

falls off exponentially fast. This can be shown, for instance, using the following lemma by taking $u_{i}=a_{i} x_{i}$ (the proof is standard, but we give it for completeness in Appendix A.1).

Proposition 2. Let u_{1}, \ldots, u_{n} be a martingale difference vector sequence (i.e., $\mathbb{E}\left[u_{i} \mid u_{1}, \ldots, u_{i-1}\right]=$ 0 for all $i=1, \ldots, n$) such that

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq v \quad \text { and } \quad\left\|u_{i}\right\| \leq b
$$

for all $i=1, \ldots, n$, almost surely. For all $t>0$,

$$
\operatorname{Pr}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|>\sqrt{v}+\sqrt{8 v t}+(4 / 3) b t\right] \leq e^{-t} .
$$

After squaring the quantities in the stated probabilistic event, Proposition 2 gives the bound

$$
\|A x\|^{2} \leq \sigma^{2} \cdot \operatorname{tr}\left(A^{\top} A\right)+\sigma^{2} \cdot O\left(\operatorname{tr}\left(A^{\top} A\right)(\sqrt{t}+t)+\sqrt{\operatorname{tr}\left(A^{\top} A\right)} \max _{i}\left\|a_{i}\right\|\left(t+t^{3 / 2}\right)+\max _{i}\left\|a_{i}\right\|^{2} t^{2}\right)
$$

with probability at least $1-e^{-t}$ when the x_{i} are almost surely bounded by 1 (or any constant).
Unfortunately, this bound obtained from Proposition 2 can be suboptimal when the x_{i} are subgaussian. For instance, if the x_{i} are Rademacher random variables, so $\operatorname{Pr}\left[x_{i}=+1\right]=\operatorname{Pr}\left[x_{i}=\right.$ $-1]=1 / 2$, then it is known that

$$
\begin{equation*}
\|A x\|^{2} \leq \operatorname{tr}\left(A^{\top} A\right)+O\left(\sqrt{\operatorname{tr}\left(\left(A^{\top} A\right)^{2}\right) t}+\|A\|^{2} t\right) \tag{2}
\end{equation*}
$$

with probability at least $1-e^{-t}$. A similar result holds for any subgaussian distribution on the x_{i} Hanson and Wright, 1971). This is an improvement over the previous bound because the deviation terms (i.e., those involving t) can be significantly smaller, especially for large t.

In this work, we give a simple proof of (2) with explicit constants that match the analogous bound when the x_{i} are independent standard Gaussian random variables.

2 Positive semidefinite quadratic forms

Our main theorem, given below, is a generalization of (2).
Theorem 1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix, and let $\Sigma:=A^{\top} A$. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ is a random vector such that, for some $\mu \in \mathbb{R}^{n}$ and $\sigma \geq 0$,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\alpha^{\top}(x-\mu)\right)\right] \leq \exp \left(\|\alpha\|^{2} \sigma^{2} / 2\right) \tag{3}
\end{equation*}
$$

for all $\alpha \in \mathbb{R}^{n}$. For all $t>0$,

$$
\operatorname{Pr}\left[\|A x\|^{2}>\sigma^{2} \cdot\left(\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right)+\|A \mu\|^{2} \cdot\left(1+4\left(\frac{\|\Sigma\|^{2}}{\operatorname{tr}\left(\Sigma^{2}\right)} t\right)^{1 / 2}+\frac{4\|\Sigma\|^{2}}{\operatorname{tr}\left(\Sigma^{2}\right)} t\right)^{1 / 2}\right] \leq e^{-t} .
$$

Remark 1. Note that when $\mu=0$ and $\sigma=1$ we have:

$$
\operatorname{Pr}\left[\|A x\|^{2}>\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right] \leq e^{-t}
$$

which is the same as Proposition 1 .
Remark 2. Our proof actually establishes the following upper bounds on the moment generating function of $\|A x\|^{2}$ for $0 \leq \eta<1 /\left(2 \sigma^{2}\|\Sigma\|\right)$:

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\eta\|A x\|^{2}\right)\right] & \leq \mathbb{E}\left[\exp \left(\sigma^{2}\left\|A^{\top} z\right\|^{2} \eta+\mu^{\top} A^{\top} z \sqrt{2 \eta}\right)\right] \\
& \leq \exp \left(\sigma^{2} \operatorname{tr}(\Sigma) \eta+\frac{\sigma^{4} \operatorname{tr}\left(\Sigma^{2}\right) \eta^{2}+\|A \mu\|^{2} \eta}{1-2 \sigma^{2}\|\Sigma\| \eta}\right)
\end{aligned}
$$

where z is a vector of m independent standard Gaussian random variables.
Proof of Theorem 1. Let z be a vector of m independent standard Gaussian random variables (sampled independently of x). For any $\alpha \in \mathbb{R}^{m}$,

$$
\mathbb{E}\left[\exp \left(z^{\top} \alpha\right)\right]=\exp \left(\|\alpha\|^{2} / 2\right)
$$

Thus, for any $\lambda \in \mathbb{R}$ and $\varepsilon \geq 0$,

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right)\right] & \geq \mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right) \mid\|A x\|^{2}>\varepsilon\right] \cdot \operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] \\
& \geq \exp \left(\frac{\lambda^{2} \varepsilon}{2}\right) \cdot \operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] . \tag{4}
\end{align*}
$$

Moreover,

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda z^{\top} A(x-\mu)\right) \mid z\right] \exp \left(\lambda z^{\top} A \mu\right)\right] \\
& \leq \mathbb{E}\left[\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\left\|A^{\top} z\right\|^{2}+\lambda \mu^{\top} A^{\top} z\right)\right] \tag{5}
\end{align*}
$$

Let $U S V^{\top}$ be a singular value decomposition of A; where U and V are, respectively, matrices of orthonormal left and right singular vectors; and $S=\operatorname{diag}\left(\sqrt{\rho_{1}}, \ldots, \sqrt{\rho_{m}}\right)$ is the diagonal matrix of corresponding singular values. Note that

$$
\|\rho\|_{1}=\sum_{i=1}^{m} \rho_{i}=\operatorname{tr}(\Sigma), \quad\|\rho\|_{2}^{2}=\sum_{i=1}^{m} \rho_{i}^{2}=\operatorname{tr}\left(\Sigma^{2}\right), \quad \text { and } \quad\|\rho\|_{\infty}=\max _{i} \rho_{i}=\|\Sigma\| .
$$

By rotational invariance, $y:=U^{\top} z$ is an isotropic multivariate Gaussian random vector with mean zero. Therefore $\left\|A^{\top} z\right\|^{2}=z^{\top} U S^{2} U^{\top} z=\rho_{1} y_{1}^{2}+\cdots+\rho_{m} y_{m}^{2}$ and $\mu^{\top} A^{\top} z=\nu^{\top} y=\nu_{1} y_{1}+\cdots+\nu_{m} y_{m}$, where $\nu:=S V^{\top} \mu$ (note that $\|\nu\|^{2}=\left\|S V^{\top} \mu\right\|^{2}=\|A \mu\|^{2}$). Let $\gamma:=\lambda^{2} \sigma^{2} / 2$. By Lemma 1

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\gamma \sum_{i=1}^{m} \rho_{i} y_{i}^{2}+\frac{\sqrt{2 \gamma}}{\sigma} \sum_{i=1}^{m} \nu_{i} y_{i}\right)\right] \leq \exp \left(\|\rho\|_{1} \gamma+\frac{\|\rho\|_{2}^{2} \gamma^{2}+\|\nu\|^{2} \gamma / \sigma^{2}}{1-2\|\rho\|_{\infty} \gamma}\right) \tag{6}
\end{equation*}
$$

for $0 \leq \gamma<1 /\left(2\|\rho\|_{\infty}\right)$. Combining (44), (5), and (6) gives

$$
\operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] \leq \exp \left(-\varepsilon \gamma / \sigma^{2}+\|\rho\|_{1} \gamma+\frac{\|\rho\|_{2}^{2} \gamma^{2}+\|\nu\|^{2} \gamma / \sigma^{2}}{1-2\|\rho\|_{\infty} \gamma}\right)
$$

for $0 \leq \gamma<1 /\left(2\|\rho\|_{\infty}\right)$ and $\varepsilon \geq 0$. Choosing

$$
\varepsilon:=\sigma^{2}\left(\|\rho\|_{1}+\tau\right)+\|\nu\|^{2} \sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}} \quad \text { and } \quad \gamma:=\frac{1}{2\|\rho\|_{\infty}}\left(1-\sqrt{\frac{\|\rho\|_{2}^{2}}{\|\rho\|_{2}^{2}+2\|\rho\|_{\infty} \tau}}\right),
$$

we have

$$
\begin{aligned}
\operatorname{Pr}\left[\|A x\|^{2}>\sigma^{2}\left(\|\rho\|_{1}+\tau\right)+\|\nu\|^{2} \sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}}\right] & \leq \exp \left(-\frac{\|\rho\|_{2}^{2}}{2\|\rho\|_{\infty}^{2}}\left(1+\frac{\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}-\sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}}\right)\right) \\
& =\exp \left(-\frac{\|\rho\|_{2}^{2}}{2\|\rho\|_{\infty}^{2}} h_{1}\left(\frac{\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}\right)\right)
\end{aligned}
$$

where $h_{1}(a):=1+a-\sqrt{1+2 a}$, which has the inverse function $h_{1}^{-1}(b)=\sqrt{2 b}+b$. The result follows by setting $\tau:=2 \sqrt{\|\rho\|_{2}^{2} t}+2\|\rho\|_{\infty} t=2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t$.

The following lemma is a standard estimate of the logarithmic moment generating function of a quadratic form in standard Gaussian random variables, proved much along the lines of the estimate due to Laurent and Massart (2000).

Lemma 1. Let z be a vector of m independent standard Gaussian random variables. Fix any non-negative vector $\alpha \in \mathbb{R}_{+}^{m}$ and any vector $\beta \in \mathbb{R}^{m}$. If $0 \leq \lambda<1 /\left(2\|\alpha\|_{\infty}\right)$, then

$$
\log \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{m} \alpha_{i} z_{i}^{2}+\sum_{i=1}^{m} \beta_{i} z_{i}\right)\right] \leq\|\alpha\|_{1} \lambda+\frac{\|\alpha\|_{2}^{2} \lambda^{2}+\|\beta\|_{2}^{2} / 2}{1-2\|\alpha\|_{\infty} \lambda} .
$$

Proof. Fix $\lambda \in \mathbb{R}$ such that $0 \leq \lambda<1 /\left(2\|\alpha\|_{\infty}\right)$, and let $\eta_{i}:=1 / \sqrt{1-2 \alpha_{i} \lambda}>0$ for $i=1, \ldots, m$. We have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \alpha_{i} z_{i}^{2}+\beta_{i} z_{i}\right)\right] & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{i}^{2} / 2\right) \exp \left(\lambda \alpha_{i} z_{i}^{2}+\beta_{i} z_{i}\right) d z_{i} \\
& =\eta_{i} \exp \left(\frac{\beta_{i}^{2} \eta_{i}^{2}}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \eta_{i}^{2}}} \exp \left(-\frac{1}{2 \eta_{i}^{2}}\left(z_{i}-\beta_{i} \eta_{i}^{2}\right)^{2}\right) d z_{i}
\end{aligned}
$$

so

$$
\log \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{m} \alpha_{i} z_{i}^{2}+\sum_{i=1}^{m} \beta_{i} z_{i}\right)\right]=\frac{1}{2} \sum_{i=1}^{m} \beta_{i}^{2} \eta_{i}^{2}+\frac{1}{2} \sum_{i=1}^{m} \log \eta_{i}^{2} .
$$

The right-hand side can be bounded using the inequalities

$$
\frac{1}{2} \sum_{i=1}^{m} \log \eta_{i}^{2}=-\frac{1}{2} \sum_{i=1}^{m} \log \left(1-2 \alpha_{i} \lambda\right)=\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{\infty} \frac{\left(2 \alpha_{i} \lambda\right)^{j}}{j} \leq\|\alpha\|_{1} \lambda+\frac{\|\alpha\|_{2}^{2} \lambda^{2}}{1-2\|\alpha\|_{\infty} \lambda}
$$

and

$$
\frac{1}{2} \sum_{i=1}^{m} \beta_{i}^{2} \eta_{i}^{2} \leq \frac{\|\beta\|_{2}^{2} / 2}{1-2\|\alpha\|_{\infty} \lambda}
$$

Example: fixed-design regression with subgaussian noise

We give a simple application of Theorem \square to fixed-design linear regression with the ordinary least squares estimator.

Let x_{1}, \ldots, x_{n} be fixed design vectors in \mathbb{R}^{d}. Let the responses y_{1}, \ldots, y_{n} be random variables for which there exists $\sigma>0$ such that

$$
\mathbb{E}\left[\exp \left(\sum_{i=1}^{n} \alpha_{i}\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)\right)\right] \leq \exp \left(\sigma^{2} \sum_{i=1}^{n} \alpha_{i}^{2}\right)
$$

for any $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. This condition is satisfied, for instance, if

$$
y_{i}=\mathbb{E}\left[y_{i}\right]+\varepsilon_{i}
$$

for independent subgaussian zero-mean noise variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Let $\Sigma:=\sum_{i=1}^{n} x_{i} x_{i}^{\top} / n$, which we assume is invertible without loss of generality. Let

$$
\beta:=\Sigma^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{E}\left[y_{i}\right]\right)
$$

be the coefficient vector of minimum expected squared error. The ordinary least squares estimator is given by

$$
\hat{\beta}:=\Sigma^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}\right) .
$$

The excess loss $R(\hat{\beta})$ of $\hat{\beta}$ is the difference between the expected squared error of $\hat{\beta}$ and that of β :

$$
R(\hat{\beta}):=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{\top} \hat{\beta}-y_{i}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{\top} \beta-y_{i}\right)^{2}\right] .
$$

It is easy to see that

$$
R(\hat{\beta})=\left\|\Sigma^{1 / 2}(\hat{\beta}-\beta)\right\|^{2}=\left\|\sum_{i=1}^{n}\left(\Sigma^{-1 / 2} x_{i}\right)\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)\right\|^{2} .
$$

By Theorem

$$
\operatorname{Pr}\left[R(\hat{\beta})>\frac{\sigma^{2}(d+2 \sqrt{d t}+2 t)}{n}\right] \leq e^{-t} .
$$

Note that in the case that $\mathbb{E}\left[\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)^{2}\right]=\sigma^{2}$ for each i, then

$$
\mathbb{E}[R(\hat{\beta})]=\frac{\sigma^{2} d}{n} ;
$$

so the tail inequality above is essentially tight when the y_{i} are independent Gaussian random variables.

References

D. L. Hanson and F. T. Wright. A bound on tail probabilities for quadratic forms in independent random variables. The Annals of Mathematical Statistics, 42(3):1079-1083, 1971.
B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. The Annals of Statistics, 28(5):1302-1338, 2000.
G. Pisier. The volume of convex bodies and Banach space geometry. Cambridge University Press, 1989.

A Standard tail inequalities

A. 1 Martingale tail inequalities

The following is a standard form of Bernstein's inequality stated for martingale difference sequences.
Lemma 2 (Bernstein's inequality for martingales). Let d_{1}, \ldots, d_{n} be a martingale difference sequence with respect to random variables x_{1}, \ldots, x_{n} (i.e., $\mathbb{E}\left[d_{i} \mid x_{1}, \ldots, x_{i-1}\right]=0$ for all $i=1, \ldots, n$) such that $\left|d_{i}\right| \leq b$ and $\sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2} \mid x_{1}, \ldots, x_{i-1}\right] \leq v$. For all $t>0$,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} d_{i}>\sqrt{2 v t}+(2 / 3) b t\right] \leq e^{-t} .
$$

The proof of Proposition 2, which is entirely standard, is an immediate consequence of the following two lemmas together with Jensen's inequality.

Lemma 3. Let u_{1}, \ldots, u_{n} be random vectors such that

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq v \quad \text { and } \quad\left\|u_{i}\right\| \leq b
$$

for all $i=1, \ldots, n$, almost surely. For all $t>0$,

$$
\operatorname{Pr}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|-\mathbb{E}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|\right]>\sqrt{8 v t}+(4 / 3) b t\right] \leq e^{-t} .
$$

Proof. Let $s_{n}:=u_{1}+\cdots+u_{n}$. Define the Doob martingale

$$
d_{i}:=\mathbb{E}\left[\left\|s_{n}\right\| \mid u_{1}, \ldots, u_{i}\right]-\mathbb{E}\left[\left\|s_{n}\right\| \mid u_{1}, \ldots, u_{i-1}\right]
$$

for $i=1, \ldots, n$, so $d_{1}+\cdots+d_{n}=\left\|s_{n}\right\|-\mathbb{E}\left[\left\|s_{n}\right\|\right]$. First, clearly, $\mathbb{E}\left[d_{i} \mid u_{1}, \ldots, u_{i-1}\right]=0$. Next, the triangle inequality implies

$$
\begin{aligned}
d_{i} & =\mathbb{E}\left[\left\|\left(s_{n}-u_{i}\right)+u_{i}\right\| \mid u_{1}, \ldots, u_{i}\right]-\mathbb{E}\left[\left\|\left(s_{n}-u_{i}\right)+u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right] \\
& \leq \mathbb{E}\left[\left\|s_{n}-u_{i}\right\|+\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i}\right]-\mathbb{E}\left[\| \| s_{n}-u_{i}\|-\| u_{i} \| \mid u_{1}, \ldots, u_{i-1}\right] \\
& =\left\|u_{i}\right\|+\mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right],
\end{aligned}
$$

and similarly, $d_{i} \geq-\left\|u_{i}\right\|-\mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right]$.
Therefore,

$$
\left|d_{i}\right| \leq\left\|u_{i}\right\|+\mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right] \leq 2 b \quad \text { almost surely. }
$$

Moreover,

$$
\begin{aligned}
\mathbb{E}\left[d_{i}^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq & \mathbb{E}\left[\left\|u_{i}\right\|^{2}+2 \cdot\left\|u_{i}\right\| \cdot \mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right]\right. \\
& \left.+\mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right]^{2} \mid u_{1}, \ldots, u_{i-1}\right] \\
= & \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right]+3 \cdot \mathbb{E}\left[\left\|u_{i}\right\| \mid u_{1}, \ldots, u_{i-1}\right]^{2} \\
\leq & 4 \cdot \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right] \\
\text { so } \quad \sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq & 4 v \quad \text { almost surely. }
\end{aligned}
$$

The claim now follows from Bernstein's inequality (Lemma (2)).
Lemma 4. If u_{1}, \ldots, u_{n} is a martingale difference vector sequence (i.e., $\mathbb{E}\left[u_{i} \mid u_{1}, \ldots, u_{i-1}\right]=0$ for all $i=1, \ldots, n)$, then

$$
\mathbb{E}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2}\right] .
$$

Proof. Let $s_{i}:=u_{1}+\cdots+u_{i}$ for $i=1, \ldots, n$; we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|s_{n}\right\|^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left\|u_{n}+s_{n-1}\right\|^{2} \mid u_{1}, \ldots, u_{n-1}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left\|u_{n}\right\|^{2}+2 u_{n}^{\top} s_{n-1}+\left\|s_{n-1}\right\|^{2} \mid u_{1}, \ldots, u_{n-1}\right]\right] \\
& =\mathbb{E}\left[\left\|u_{n}\right\|^{2}\right]+\mathbb{E}\left[\left\|s_{n-1}\right\|^{2}\right]
\end{aligned}
$$

so the claim follows by induction.

A. 2 Gaussian quadratic forms and χ^{2} tail inequalities

It is well-known that if $z \sim \mathcal{N}(0,1)$ is a standard Gaussian random variable, then z^{2} follows a χ^{2} distribution with one degree of freedom. The following inequality due to Laurent and Massart (2000) gives a bound on linear combinations of χ^{2} random variables.

Lemma 5 (χ^{2} tail inequality; Laurent and Massart, 2000). Let q_{1}, \ldots, q_{n} be independent χ^{2} random variables, each with one degree of freedom. For any vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{R}_{+}^{n}$ with non-negative entries, and any $t>0$,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} \gamma_{i} q_{i}>\|\gamma\|_{1}+2 \sqrt{\|\gamma\|_{2}^{2} t}+2\|\gamma\|_{\infty} t\right] \leq e^{-t} .
$$

Proof of Proposition 1. Let $V \Lambda V^{\top}$ be an eigen-decomposition of $A^{\top} A$, where V is a matrix of orthonormal eigenvectors, and $\Lambda:=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right)$ is the diagonal matrix of corresponding eigenvalues $\rho_{1}, \ldots, \rho_{n}$. By the rotational invariance of the distribution, $z:=V^{\top} x$ is an isotropic multivariate Gaussian random vector with mean zero. Thus, $\|A x\|^{2}=z^{\top} \Lambda z=\rho_{1} z_{1}^{2}+\cdots+\rho_{n} z_{n}^{2}$, and the z_{i}^{2} are independent χ^{2} random variables, each with one degree of freedom. The claim now follows from a tail bound for χ^{2} random variables (Lemma 5, due to Laurent and Massart, 2000).

[^0]: E-mail: dahsu@microsoft.com, skakade@wharton.upenn.edu, tzhang@stat.rutgers.edu

