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Abstract

This note gives a simple analysis of a randomized approximation scheme for matrix multipli-
cation proposed by [Sar06] based on a random rotation followed by uniform column sampling.
The result follows from a matrix version of Bernstein’s inequality and a tail inequality for
quadratic forms in subgaussian random vectors.

1 Introduction

Let A := [a1|a2| · · · |am] ∈ RdA×m and B := [b1|b2| · · · |bm] ∈ RdB×m be fixed matrices, each with
m columns. If m is very large, then the straightforward computation of the matrix product AB⊤

(with Ω(dAdBm) operations) can be prohibitive.
We can instead approximate the product using the following randomized scheme. Let Θ ∈ Rm×m

be a random orthogonal matrix; the distribution of Θ will be specified later in Theorem 1, but a
key property of Θ will be that the matrix products

Ã := AΘ and B̃ := BΘ

can be computed with O((dA + dB)m logm) operations. Given the products Ã = [ã1|ã2| · · · |ãm]
and B̃ = [b̃1|b̃2| · · · |b̃m], we take a small uniform random sample of pairs of their columns (drawn
with replacement)

(ãi1 , b̃i1), (ãi2 , b̃i2), . . . , (ãin , b̃in),

and then compute the sum of outer products

ÂB⊤ :=
m

n

n∑

j=1

ãij b̃
⊤

ij .

It is easy to check that ÂB⊤ is an unbiased estimator of AB⊤. The sum can be computed from Ã
and B̃ with O(dAdBn) operations, so overall, the matrix ÂB⊤ can be computed with O(dAdBn+
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(dA + dB)m logm) operations. (In fact, the logm can be replaced by log n [AL08].) Therefore, we

would like n to be as small as possible so that, with high probability, ‖ÂB⊤ − AB⊤‖ ≤ ε‖A‖‖B‖
for some error ε > 0, where ‖ · ‖ denotes the spectral norm. As shown in Theorem 1, it suffices to
have

n = Ω

(
(k + log(m)) log(k)

ε2

)
,

where k := max{tr(A⊤A)/‖A‖2, tr(B⊤B)/‖B‖2} ≤ max{rank(A), rank(B)}.
A flawed analysis of a different scheme based on non-uniform column sampling (without a

random rotation Θ) was given in [HKZ12a]; that analysis gave an incorrect bound on ‖E[X2]‖ for a
certain random symmetric matrix X. A different analysis of this non-uniform sampling scheme can
be found in [MZ11], but that analysis has some deficiencies as pointed out in [HKZ12a]. The scheme
studied in the present work, which employs a certain random rotation followed by uniform column
sampling, was proposed by [Sar06], and is based on the Fast Johnson-Lindenstrauss Transform
of [AC09]. The analysis given in [Sar06] bounds the Frobenius norm error; in this work, we bound
the spectral norm error. A similar but slightly looser analysis of spectral norm error was very
recently provided in [ABTZ12].

2 Analysis

Let [m] := {1, 2, . . . ,m}.

Theorem 1. Pick any δ ∈ (0, 1/3), and let k := max{tr(AA⊤)/‖A‖2, tr(BB⊤)/‖B‖2} (note that
k ≤ max{rank(A), rank(B)}. Assume Θ = 1√

m
DH, where D = diag(ǫ), ǫ ∈ {±1}m is a vector

of independent Rademacher random variables, and H ∈ {±1}m×m is a Hadamard matrix. With
probability at least 1− δ,

‖ÂB⊤ −AB⊤‖ ≤ ‖A‖‖B‖
(√

4(k + 2
√

k ln(3m/δ) + 2 ln(3m/δ) + 1) ln(6k/δ)

n

+
2(k + 2

√
k ln(3m/δ) + 2 ln(3m/δ) + 1) ln(6k/δ)

3n

)
.

The proof of Theorem 1 is a consequence of the following lemmas, combined with a union
bound. Lemma 1 bounds the error in terms of a certain quantity µ which depends on the random
orthogonal matrix Θ (and A and B). Lemma 2 gives a bound on µ that holds with high probability
over the random choice of Θ.

Lemma 1. Define Q = [q1|q2| · · · |qm] := ‖A‖−1AΘ, R = [r1|r2| · · · |rm] := ‖B‖−1BΘ, kA :=
tr(QQ⊤) = tr(AA⊤)/‖A‖2, kB := tr(RR⊤) = tr(BB⊤)/‖B‖2, and

µ := mmax
({

‖qi‖2 : i ∈ [m]
}
∪
{
‖ri‖2 : i ∈ [m]

})
.

Then

Pr

[
‖ÂB⊤ −AB⊤‖ > ‖A‖‖B‖

(√
2(µ+ 1)t

n
+

(µ+ 1)t

3n

)]
≤ 2
√

kAkB · t

et − t− 1
.
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Proof. Observe that because Θ is orthogonal,

‖ÂB⊤ −AB⊤‖ = ‖A‖‖B‖
∥∥∥∥
m

n

n∑

j=1

qijr
⊤

ij −QR⊤

∥∥∥∥.

We now derive a high probability bound for the last term on the right-hand side. Define a random
symmetric matrix X with

Pr

[
X = m

[
0 qir

⊤

i

riq
⊤

i 0

]]
=

1

m
, i ∈ [m],

and let X1,X2, . . . ,Xn be independent copies of X. Define

M̂ :=
1

n

n∑

j=1

Xj and M :=

[
0 QR⊤

RQ⊤ 0

]
.

Then

‖M̂ −M‖ =

∥∥∥∥
1

n

n∑

j=1

(Xj −M)

∥∥∥∥
distribution

=

∥∥∥∥
m

n

n∑

j=1

qijr
⊤

ij −QR⊤

∥∥∥∥.

Observe that E[X −M ] = 0 and ‖X −M‖ ≤ ‖X‖+ ‖M‖ ≤ µ+ 1. Moreover,

E[X]2 = M2 =

[
QR⊤RQ⊤ 0

0 RQ⊤QR⊤

]
,

E[X2] =

m∑

i=1

m

[
‖ri‖2qiq⊤

i 0
0 ‖qi‖2rir⊤

i

]
= m

[∑m
i=1

‖ri‖2qiq⊤

i 0
0

∑m
i=1

‖qi‖2rir⊤

i

]
,

tr(E[X2]) = 2m

m∑

i=1

‖qi‖2‖ri‖2 ≤ 2µ

m∑

i=1

‖qi‖‖ri‖ ≤ 2µ
√

kAkB ,

‖E[X2]‖ ≤ mmax
{∥∥∥

m∑

i=1

‖ri‖2qiq⊤

i

∥∥∥,
∥∥∥

m∑

i=1

‖qi‖2rir⊤

i

∥∥∥
}
≤ µmax

{
‖QQ⊤‖, ‖RR⊤‖

}
= µ,

‖E[(X −M)2]‖ = ‖E[X2]−M2‖ ≤ µ+ 1.

Therefore, by the matrix Bernstein inequality from [HKZ12a],

Pr

[
‖M̂ −M‖ >

√
2(µ + 1)t

n
+

(µ+ 1)t

3n

]
≤ 2
√

kAkB · t

et − t− 1
.

The lemma follows.

The following lemma is a special case of a result found in [HKZ11].

Lemma 2. Assume Θ = 1√
m
DH, where D = diag(ǫ), ǫ ∈ {±1}m is a vector of independent

Rademacher random variables, and H ∈ {±1}m×m is a Hadamard matrix. Let Z ∈ Rm×d be a
matrix with ‖Z‖ ≤ 1, and set kZ := tr(ZZ⊤). Then

Pr

[
max{‖Z⊤Θei‖2 : i ∈ [m]} >

kZ + 2
√

kZ(ln(m) + t) + 2(ln(m) + t)

m

]
≤ e−t

where ei ∈ {0, 1}m is the i-th coordinate axis vector in Rm.
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Proof. Observe that for each i ∈ [m], the random vector
√
mΘei has the same distribution as ǫ.

Moreover, ǫ is a subgaussian random vector in the sense that E[exp(α⊤ǫ)] ≤ exp(‖α‖2/2) for any
vector α ∈ Rm. Therefore, we may apply a tail bound for quadratic forms in subgaussian random
vectors (e.g., [HKZ12b]) to obtain

Pr

[
‖
√
mZ⊤Θei‖2 > tr(ZZ⊤) + 2

√
tr((ZZ⊤)2)τ + 2‖ZZ⊤‖τ

]
≤ e−τ

for each i ∈ [m] and any τ > 0. The lemma follows by observing that ‖ZZ⊤‖ ≤ 1 and tr((ZZ⊤)2) ≤
tr(ZZ⊤)‖ZZ⊤‖ ≤ kZ , and applying a union bound over all i ∈ [m].

We note that Lemma 2 holds for many other distributions of orthogonal matrices (with possibly
worse constants). All that is required is that

√
mΘei be a subgaussian random vector for each

i ∈ [m]. See [HKZ11] for more discussion.

Proof of Theorem 1. We apply Lemma 2 with both Z = A/‖A‖ and Z = B/‖B‖, and combine the
implied probability bounds with a union bound to obtain

Pr
[
µ > k + 2

√
k log(3m/δ) + 2 ln(3m/δ)

]
≤ 2δ/3,

where µ is defined in the statement of Lemma 1, and the probabiltiy is taken with respect to the
random choice of Θ. Now we apply Lemma 1, together with the bound t/(et − t − 1) ≤ e−t/2 for
t ≥ 2.6, and substitute t := 2 ln(6k/δ) to obtain

Pr

[
‖ÂB⊤ −AB⊤‖ > ‖A‖‖B‖

(√
4(µ + 1) ln(6k/δ)

n
+

2(µ + 1) ln(6k/δ)

3n

)]
≤ δ/3.

Combining the two probability bounds with a union bound implies the claim.
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