
ar
X

iv
:1

60
5.

08
37

0v
1

 [
cs

.L
G

]
 2

6
M

ay
 2

01
6

Provable Efficient Online Matrix Completion via Non-convex

Stochastic Gradient Descent

Chi Jin∗ Sham M. Kakade† Praneeth Netrapalli‡

May 27, 2016

Abstract

Matrix completion, where we wish to recover a low rank matrix by observing a few entries
from it, is a widely studied problem in both theory and practice with wide applications. Most
of the provable algorithms so far on this problem have been restricted to the offline setting
where they provide an estimate of the unknown matrix using all observations simultaneously.
However, in many applications, the online version, where we observe one entry at a time and
dynamically update our estimate, is more appealing. While existing algorithms are efficient for
the offline setting, they could be highly inefficient for the online setting.

In this paper, we propose the first provable, efficient online algorithm for matrix completion.
Our algorithm starts from an initial estimate of the matrix and then performs non-convex
stochastic gradient descent (SGD). After every observation, it performs a fast update involving
only one row of two tall matrices, giving near linear total runtime. Our algorithm can be
naturally used in the offline setting as well, where it gives competitive sample complexity and
runtime to state of the art algorithms. Our proofs introduce a general framework to show that
SGD updates tend to stay away from saddle surfaces and could be of broader interests for other
non-convex problems to prove tight rates.

1 Introduction

Low rank matrix completion refers to the problem of recovering a low rank matrix by observing
the values of only a tiny fraction of its entries. This problem arises in several applications such as
video denoising [14], phase retrieval [3] and most famously in movie recommendation engines [16].
In the context of recommendation engines for instance, the matrix we wish to recover would be
user-item rating matrix where each row corresponds to a user and each column corresponds to an
item. Each entry of the matrix is the rating given by a user to an item. Low rank assumption
on the matrix is inspired by the intuition that rating of an item by a user depends on only a few
hidden factors, which are much fewer than the number of users or items. The goal is to estimate
the ratings of all items by users given only partial ratings of items by users, which would then be
helpful in recommending new items to users.

The seminal works of Candès and Recht [4] first identified regularity conditions under which low
rank matrix completion can be solved in polynomial time using convex relaxation – low rank matrix

∗UC Berkeley. Email: chijin@cs.berkeley.edu
†University of Washington. Email: sham@cs.washington.edu
‡Microsoft Research New England. Email: praneeth@microsoft.com

1

http://arxiv.org/abs/1605.08370v1

completion could be ill-posed and NP-hard in general without such regularity assumptions [10].
Since then, a number of works have studied various algorithms under different settings for matrix
completion: weighted and noisy matrix completion, fast convex solvers, fast iterative non-convex
solvers, parallel and distributed algorithms and so on.

Most of this work however deals only with the offline setting where all the observed entries
are revealed at once and the recovery procedure does computation using all these observations
simultaneously. However in several applications [5, 19], we encounter the online setting where
observations are only revealed sequentially and at each step the recovery algorithm is required to
maintain an estimate of the low rank matrix based on the observations so far. Consider for instance
recommendation engines, where the low rank matrix we are interested in is the user-item rating
matrix. While we make an observation only when a user rates an item, at any point of time, we
should have an estimate of the user-item rating matrix based on all prior observations so as to be
able to continuously recommend items to users. Moreover, this estimate should get better as we
observe more ratings.

Algorithms for offline matrix completion can be used to solve the online version by rerunning the
algorithm after every additional observation. However, performing so much computation for every
observation seems wasteful and is also impractical. For instance, using alternating minimization,
which is among the fastest known algorithms for the offline problem, would mean that we take
several passes of the entire data for every additional observation. This is simply not feasible in
most settings. Another natural approach is to group observations into batches and do an update
only once for each batch. This however induces a lag between observations and estimates which is
undesirable. To the best of our knowledge, there is no known provable, efficient, online algorithm
for matrix completion.

On the other hand, in order to deal with the online matrix completion scenario in practical
applications, several heuristics (with no convergence guarantees) have been proposed in literature [2,
20]. Most of these approaches are based on starting with an estimate of the matrix and doing fast
updates of this estimate whenever a new observation is presented. One of the update procedures
used in this context is that of stochastic gradient descent (SGD) applied to the following non-convex
optimization problem

min
U,V
‖M−UV⊤‖2F s.t. U ∈ R

d1×k,V ∈ R
d2×k, (1)

where M is the unknown matrix of size d1 × d2, k is the rank of M and UV⊤ is a low rank
factorization of M we wish to obtain. The algorithm starts with some U0 and V0, and given a
new observation (M)ij , SGD updates the ith-row and the jth-row of the current iterates Ut and
Vt respectively by

U
(i)
t+1 = U

(i)
t − 2ηd1d2

(
UtV

⊤
t −M

)
ij
V

(j)
t , and,

V
(j)
t+1 = V

(j)
t − 2ηd1d2

(
UtV

⊤
t −M

)
ij
U

(i)
t , (2)

where η is an appropriately chosen stepsize, and U(i) denote the ith row of matrix U. Note that
each update modifies only one row of the factor matrices U and V, and the computation only
involves one row of U,V and the new observed entry (M)ij and hence are extremely fast. These
fast updates make SGD extremely appealing in practice. Moreover, SGD, in the context of matrix
completion, is also useful for parallelization and distributed implementation [24].

2

1.1 Our Contributions

In this work we present the first provable efficient algorithm for online matrix completion by showing
that SGD (2) with a good initialization converges to a true factorization of M at a geometric rate.
Our main contributions are as follows.

• We provide the first provable, efficient, online algorithm for matrix completion. Starting with
a good initialization, after each observation, the algorithm makes quick updates each taking
time O(k3) and requires O(µdkκ4(k+log ‖M‖F

ǫ
) log d) observations to reach ǫ accuracy, where

µ is the incoherence parameter, d = max(d1, d2), k is the rank and κ is the condition number
of M.

• Moreover, our result features both sample complexity and total runtime linear in d, and is
competitive to even the best existing offline results for matrix completion. (either improve
over or is incomparable, i.e., better in some parameters and worse in others, to these results).
See Table 1 for the comparison.

• To obtain our results, we introduce a general framework to show SGD updates tend to stay
away from saddle surfaces. In order to do so, we consider distances from saddle surfaces, show
that they behave like sub-martingales under SGD updates and use martingale convergence
techniques to conclude that the iterates stay away from saddle surfaces. While [25] shows that
SGD updates stay away from saddle surfaces, the stepsizes they can handle are quite small
(scaling as 1/poly(d1, d2)), leading to suboptimal computational complexity. Our framework
makes it possible to establish the same statement for much larger step sizes, giving us near-
optimal runtime. We believe these techniques may be applicable in other non-convex settings
as well.

1.2 Related Work

In this section we will mention some more related work.
Offline matrix completion: There has been a lot of work on designing offline algorithms

for matrix completion, we provide the detailed comparison with our algorithm in Table 1. The
nuclear norm relaxation algorithm [23] has near-optimal sample complexity for this problem but
is computationally expensive. Motivated by the empirical success of non-convex heuristics, a long
line of works, [15, 9, 13, 25] and so on, has obtained convergence guarantees for alternating mini-
mization, gradient descent, projected gradient descent etc. Even the best of these are suboptimal
in sample complexity by poly(k, κ) factors. Our sample complexity is better than that of [15] and is
incomparable to those of [9, 13]. To the best of our knowledge, the only provable online algorithm
for this problem is that of Sun and Luo [25]. However the stepsizes they suggest are quite small,
leading to suboptimal computational complexity by factors of poly(d1, d2). The runtime of our
algorithm is linear in d, which makes poly(d) improvements over it.

Other models for online matrix completion: Another variant of online matrix completion
studied in the literature is where observations are made on a column by column basis e.g., [17, 27].
These models can give improved offline performance in terms of space and could potentially work
under relaxed regularity conditions. However, they do not tackle the version where only entries (as
opposed to columns) are observed.

Non-convex optimization: Over the last few years, there has also been a significant amount
of work in designing other efficient algorithms for solving non-convex problems. Examples include

3

Algorithm
Sample

complexity
Total runtime Online?

Nuclear Norm [23] Õ(µdk) Õ(d3/
√
ǫ) No

Alternating
minimization [15]

Õ(µdkκ8 log 1
ǫ
) Õ(µdk2κ8 log 1

ǫ
) No

Alternating
minimization [9]

Õ
(
µdk2κ2

(
k + log 1

ǫ

))
Õ
(
µdk3κ2

(
k + log 1

ǫ

))
No

Projected gradient
descent[13]

Õ(µdk5) Õ(µdk7 log 1
ǫ
) No

SGD [25] Õ(µ2dk7κ6) poly(µ, d, k, κ) log 1
ǫ

Yes

SGD [8]1 d · poly(µ, k, κ) poly(µ, d, k, κ, 1
ǫ
) Yes

Our result Õ
(
µdkκ4

(
k + log 1

ǫ

))
Õ
(
µdk4κ4 log 1

ǫ

)
Yes

Table 1: Comparison of sample complexity and runtime of our algorithm with existing algorithms
in order to obtain Frobenius norm error ǫ. Õ(·) hides log d factors. See Section 1.2 for more
discussion.

eigenvector computation [6, 12], sparse coding [21, 1] etc. For general non-convex optimization,
an interesting line of recent work is that of [7], which proves gradient descent with noise can also
escape saddle point, but they only provide polynomial rate without explicit dependence. Later
[18, 22] show that without noise, the space of points from where gradient descent converges to a
saddle point is a measure zero set. However, they do not provide a rate of convergence. Another
related piece of work to ours is [11], proves global convergence along with rates of convergence, for
the special case of computing matrix squareroot. During the preparation of this draft, the recent
work [8] was announced which proves the global convergence of SGD for matrix completion and
can also be applied to the online setting. However, their result only deals with the case where M

is positive semidefinite (PSD) and their rate is still suboptimal by factors of poly(d1, d2).

1.3 Outline

The rest of the paper is organized as follows. In Section 2 we formally describe the problem and all
relevant parameters. In Section 3, we present our algorithms, results and some of the key intuition
behind our results. In Section 4 we give proof outline for our main results. We conclude in Section 5.
All formal proofs are deferred to the Appendix.

2 Preliminaries

In this section, we introduce our notation, formally define the matrix completion problem and
regularity assumptions that make the problem tractable.

1This result only applies to the case where M is symmetric PSD

4

2.1 Notation

We use [d] to denote {1, 2, · · · , d}. We use bold capital letters A,B to denote matrices and bold
lowercase letters u,v to denote vectors. Aij means the (i, j)th entry of matrix A. ‖w‖ denotes the
ℓ2-norm of vector w and ‖A‖/‖A‖F/‖A‖∞ denotes the spectral/Frobenius/infinity norm of matrix
A. σi(A) denotes the ith largest singular value of A and σmin(A) denotes the smallest singular
value of A. We also let κ(A) = ‖A‖ /σmin(A) denote the condition number of A (i.e., the ratio
of largest to smallest singular value). Finally, for orthonormal bases of a subspace W, we also use
PW = WW⊤ to denote the projection to the subspace spanned by W.

2.2 Problem statement and assumptions

Consider a general rank k matrix M ∈ R
d1×d2 . Let Ω ⊂ [d1]× [d2] be a subset of coordinates, which

are sampled uniformly and independently from [d1]× [d2]. We denote PΩ(M) to be the projection
of M on set Ω so that:

[PΩ(M)]ij =

{
Mij , if (i, j) ∈ Ω
0, if (i, j) 6∈ Ω

Low rank matrix completion is the task of recovering M by only observing PΩ(M). This task is
ill-posed and NP-hard in general [10]. In order to make this tractable, we make by now standard
assumptions about the structure of M.

Definition 2.1. Let W ∈ R
d×k be an orthonormal basis of a subspace of Rd of dimension k. The

coherence of W is defined to be

µ(W)
def
=
d

k
max
1≤i≤d

‖PWei‖2 =
d

k
max
1≤i≤d

∥∥∥e⊤i W
∥∥∥
2

Assumption 2.2 (µ-incoherence[4, 23]). We assume M is µ-incoherent, i.e., max{µ(X), µ(Y)} ≤
µ, where X ∈ R

d1×k,Y ∈ R
d2×k are the left and right singular vectors of M.

3 Main Results

In this section, we present our main result. We will first state result for a special case where M

is a symmetric positive semi-definite (PSD) matrix, where the algorithm and analysis are much
simpler. We will then discuss the general case.

3.1 Symmetric PSD Case

Consider the special case where M is symmetric PSD. We let d
def
= d1 = d2, and we can parametrize

a rank k symmetric PSD matrix by UU⊤ where U ∈ R
d×k. Our algorithm for this case is given

in Algorithm 1. The following theorem provides guarantees on the performance of Algorithm 1.
The algorithm starts by using an initial set of samples Ωinit to construct a crude approximation to
the low rank of factorization of M. It then observes samples from M one at a time and updates
its factorization after every observation. Note that each update step modifies two rows of Ut and
hence takes time O(k).

5

Algorithm 1 Online Algorithm for PSD Matrix Completion.

Input: Initial set of uniformly random samples Ωinit of a symmetric PSD matrix M ∈ R
d×d,

learning rate η, iterations T
Output: U such that UU⊤ ≈M

U0U
⊤
0 ← top k SVD of d2

|Ωinit|PΩinit
(M)

for t = 0, · · · , T − 1 do

Observe Mij where (i, j) ∼ Unif ([d]× [d])
Ut+1 ← Ut − 2ηd2(UtU

⊤
t −M)ij(eie

⊤
j + eje

⊤
i)Ut

end for

Return UT

Theorem 3.1. Let M ∈ R
d×d be a rank k, symmetric PSD matrix with µ-incoherence. There

exist some absolute constants c0 and c such that if |Ωinit| ≥ c0µdk
2κ2(M) log d, learning rate η ≤

c
µdkκ3(M)‖M‖ log d , then for any fixed T ≥ 1, with probability at least 1 − T

d10
, we will have for all

t ≤ T that:

‖UtU
⊤
t −M‖2F ≤

(
1− 1

2
η · σmin(M)

)t(1

10
σmin(M)

)2

.

Remarks:

• The algorithm uses an initial set of observations Ωinit to produce a warm start iterate U0,
then enters the online stage, where it performs SGD.

• The sample complexity of the warm start phase is O(µdk2κ2(M) log d). The initialization
consists of a top-k SVD on a sparse matrix, whose runtime is O(µdk3κ2(M) log d).

• For the online phase (SGD), if we choose η = c
µdkκ3(M)‖M‖ log d , the number of observations T

required for the error ‖UTU
⊤
T −M‖F to be smaller than ǫ is O(µdkκ(M)4 log d log σmin(M)

ǫ
).

• Since each SGD step modifies two rows of Ut, its runtime is O(k) with a total runtime for
online phase of O(kT).

Our proof approach is to essentially show that the objective function is well-behaved (i.e., is smooth
and strongly convex) in a local neighborhood of the warm start region, and then use standard
techniques to show that SGD obtains geometric convergence in this setting. The most challenging
and novel part of our analysis comprises of showing that the iterate does not leave this local
neighborhood while performing SGD updates. Refer Section 4 for more details on the proof outline.

3.2 General Case

Let us now consider the general case where M ∈ R
d1×d2 can be factorized as UV⊤ with U ∈ R

d1×k

and V ∈ R
d2×k. In this scenario, we denote d = max{d1, d2}. We recall our remarks from

the previous section that our analysis of the performance of SGD depends on the smoothness and
strong convexity properties of the objective function in a local neighborhood of the iterates. Having
U 6= V introduces additional challenges in this approach since for any nonsingular k-by-k matrix

C, and U′ def= UC⊤,V′ def= VC−1, we have U′V′⊤ = UV⊤. Suppose for instance C is a very small
scalar times the identity i.e., C = δI for some small δ > 0. In this case, U′ will be large while V′

6

will be small. This drastically deteriorates the smoothness and strong convexity properties of the
objective function in a neighborhood of (U′,V′).

Algorithm 2 Online Algorithm for Matrix Completion (Theoretical)

Input: Initial set of uniformly random samples Ωinit of M ∈ R
d1×d2 , learning rate η, iterations T

Output: U,V such that UV⊤ ≈M

U0V
⊤
0 ← top k SVD of d1d2

|Ωinit|PΩinit
(M)

for t = 0, · · · , T − 1 do

WUDW⊤
V ← SVD(UtV

⊤
t)

Ũt ←WUD
1

2 , Ṽt ←WV D
1

2

Observe Mij where (i, j) ∼ Unif ([d]× [d])
Ut+1 ← Ũt − 2ηd1d2(ŨtṼ

⊤
t −M)ijeie

⊤
j Ṽt

Vt+1 ← Ṽt − 2ηd1d2(ŨtṼ
⊤
t −M)ijeje

⊤
i Ũt

end for

Return UT ,VT .

To preclude such a scenario, we would ideally like to renormalize after each step by doing
Ũt ← WUD

1

2 , Ṽt ← WV D
1

2 , where WUDW⊤
V is the SVD of matrix UtV

⊤
t . This algorithm is

described in Algorithm 2. However, a naive implementation of Algorithm 2, especially the SVD
step, would incur O(min{d1, d2}) computation per iteration, resulting in a runtime overhead of O(d)
over both the online PSD case (i.e., Algorithm 1) as well as the near linear time offline algorithms
(see Table 1). It turns out that we can take advantage of the fact that in each iteration we only
update a single row of Ut and a single row of Vt, and do efficient (but more complicated) update
steps instead of doing an SVD on d1 × d2 matrix. The resulting algorithm is given in Algorithm
3. The key idea is that in order to implement the updates, it suffices to do an SVD of U⊤

t Ut and
V⊤

t Vt which are k × k matrices. So the runtime of each iteration is at most O(k3). The following
lemma shows the equivalence between Algorithms 2 and 3.

Algorithm 3 Online Algorithm for Matrix Completion (Practical)

Input: Initial set of uniformly random samples Ωinit of M ∈ R
d1×d2 , learning rate η, iterations T

Output: U,V such that UV⊤ ≈M

U0V
⊤
0 ← top k SVD of d1d2

Ωinit
PΩinit

(M)
for t = 0, · · · , T − 1 do

RUDUR
⊤
U ← SVD(U⊤

t Ut)
RV DV R

⊤
V ← SVD(V⊤

t Vt)

QUDQ⊤
V ← SVD(D

1

2

UR
⊤
URV (D

1

2

V)
⊤)

Observe Mij where (i, j) ∼ Unif ([d]× [d])

Ut+1 ← Ut − 2ηd1d2(UtV
⊤
t −M)ijeie

⊤
j VtRV D

− 1

2

V QVQ
⊤
UD

1

2

UR
⊤
U

Vt+1 ← Vt − 2ηd1d2(UtV
⊤
t −M)ijeje

⊤
i UtRUD

− 1

2

U QUQ
⊤
V D

1

2

V R
⊤
V

end for

Return UT ,VT .

Lemma 3.2. Algorithm 2 and Algorithm 3 are equivalent in the sense that: given same observations

7

from M and other inputs, the outputs of Algorithm 2, U,V and those of Algorithm 3, U′,V′ satisfy
UV⊤ = U′V′⊤.

Since the output of both algorithms is the same, we can analyze Algorithm 2 (which is easier
than that of Algorithm 3), while implementing Algorithm 3 in practice. The following theorem is
the main result of our paper which presents guarantees on the performance of Algorithm 2.

Theorem 3.3. Let M ∈ R
d1×d2 be a rank k matrix with µ-incoherence and let d

def
= max(d1, d2).

There exist some absolute constants c0 and c such that if |Ωinit| ≥ c0µdk2κ2(M) log d, learning rate
η ≤ c

µdkκ3(M)‖M‖ log d , then for any fixed T ≥ 1, with probability at least 1− T
d10

, we will have for all

t ≤ T that:

‖UtV
⊤
t −M‖2F ≤

(
1− 1

2
η · σmin(M)

)t(1

10
σmin(M)

)2

.

Remarks:

• Just as in the case of PSD matrix completion (Theorem 3.1), Algorithm 2 needs a an initial
set of observations Ωinit to provide a warm start U0 and V0 after which it performs SGD.

• The sample complexity and runtime of the warm start phase are the same as in symmetric
PSD case. The stepsize η and the number of observations T to achieve ǫ error in online phase
(SGD) are also the same as in symmetric PSD case.

• However, runtime of each update step in online phase is O(k3) with total runtime for online
phase O(k3T).

The proof of this theorem again follows a similar line of reasoning as that of Theorem 3.1 by
first showing that the local neighborhood of warm start iterate has good smoothness and strong
convexity properties and then use them to show geometric convergence of SGD. Proof of the
fact that iterates do not move away from this local neighborhood however is significantly more
challenging due to renormalization steps in the algorithm. Please see Appendix C for the full
proof.

4 Proof Sketch

In this section we will provide the intuition and proof sketch for our main results. For simplicity and
highlighting the most essential ideas, we will mostly focus on the symmetric PSD case (Theorem
3.1). For the asymmetric case, though the high-level ideas are still valid, a lot of additional effort is
required to address the renormalization step in Algorithm 2. This makes the proof more involved.

First, note that our algorithm for the PSD case consists of an initialization and then stochastic
descent steps. The following lemma provides guarantees on the error achieved by the initial iterate
U0.

Lemma 4.1. Let M ∈ R
d×d be a rank-k PSD matrix with µ-incoherence. There exists a constant

c0 such that if |Ωinit| ≥ c0µdk2κ2(M) log d, then with probability at least 1− 1
d10

, the top-k SVD of
d2

|init|PΩinit
(M) satisfies Then there exists universal constant c0, for any m ≥, we have:

‖M−U0U
⊤
0 ‖F ≤

1

20
σmin(M) and max

j

∥∥∥e⊤j U0

∥∥∥
2
≤ 10µkκ(M)

d
‖M‖ (3)

8

By Lemma 4.1, we know the initialization algorithm already gives U0 in the local region given
by Eq.(3). Intuitively, stochastic descent steps should keep doing local search within this local
region.

To establish linear convergence on ‖UtU
⊤
t −M‖2F and obtain final result, we first establish

several important lemmas describing the properties of this local regions. Throughout this section,
we always denote SVD(M) = XSX⊤, whereX ∈ R

d×k, and diagnal matrix S ∈ R
k×k. We postpone

all the formal proofs in Appendix.

Lemma 4.2. For function f(U) = ‖M−UU⊤‖2F and any U1,U2 ∈ {U| ‖U‖ ≤ Γ}, we have:

‖∇f(U1)−∇f(U2)‖F ≤ 16max{Γ2, ‖M‖} · ‖U1 −U2‖F

Lemma 4.3. For function f(U) = ‖M−UU⊤‖2F and any U ∈ {U|σmin(X
⊤U) ≥ γ}, we have:

‖∇f(U)‖2F ≥ 4γ2f(U)

Lemma 4.2 tells function f is smooth if spectral norm of U is not very large. On the other hand,
σmin(X

⊤U) not too small requires both σmin(U
⊤U) and σmin(X

⊤W) are not too small, where W

is top-k eigenspace of UU⊤. That is, Lemma 4.3 tells function f has a property similar to strongly
convex in standard optimization literature, if U is rank k in a robust sense (σk(U) is not too small),
and the angle between the top k eigenspace of UU⊤ and the top k eigenspace M is not large.

Lemma 4.4. Within the region D = {U|
∥∥M−UU⊤∥∥

F
≤ 1

10σk(M)}, we have:

‖U‖ ≤
√

2 ‖M‖, σmin(X
⊤U) ≥

√
σk(M)/2

Lemma 4.4 tells inside region {U|
∥∥M−UU⊤∥∥

F
≤ 1

10σk(M)}, matrix U always has a good
spectral property which gives preconditions for both Lemma 4.2 and 4.3, where f(U) is both smooth
and has a property very similar to strongly convex.

With above three lemmas, we already been able to see the intuition behind linear convergence
in Theorem 3.1. Denote stochastic gradient

SG(U) = 2d2(UU⊤ −M)ij(eie
⊤
j + eje

⊤
i)U (4)

where SG(U) is a random matrix depends on the randomness of sample (i, j) of matrix M. Then,
the stochastic update step in Algorithm 1 can be rewritten as:

Ut+1 ← Ut − ηSG(Ut)

Let f(U) = ‖M−UU⊤‖2F, By easy caculation, we know ESG(U) = ∇f(U), that is SG(U) is
unbiased. Combine Lemma 4.4 with Lemma 4.2 and Lemma 4.3, we know within region D specified
by Lemma 4.4, we have function f(U) is 32 ‖M‖-smooth, and ‖∇f(U)‖2F ≥ 2σmin(M)f(U).

Let’s suppose ideally, we always have U0, . . . ,Ut inside region D, this directly gives:

Ef(Ut+1) ≤ Ef(Ut)− ηE〈∇f(Ut), SG(Ut)〉+ 16η2 ‖M‖ · E‖SG(Ut)‖2F
= Ef(Ut)− ηE‖∇f(Ut)‖2F + 16η2 ‖M‖ · E‖SG(Ut)‖2F
≤ (1− 2ησmin(M))Ef(Ut) + 16η2 ‖M‖ · E‖SG(Ut)‖2F

9

One interesting aspect of our main result is that we actually show linear convergence under the
presence of noise in gradient. This is true because for the second-order (η2) term above, we can
roughly see from Eq.(4) that ‖SG(U)‖2F ≤ h(U) · f(U), where h(U) is a factor depends on U and
always bounded. That is, SG(U) enjoys self-bounded property — ‖SG(U)‖2F will goes to zero, as
objective function f(U) goes to zero. Therefore, by choosing learning rate η appropriately small,
we can have the first-order term always dominate the second-order term, which establish the linear
convergence.

Now, the only remaining issue is to prove that “U0, . . . ,Ut always stay inside local region D”.
In reality, we can only prove this statement with high probability due to the stochastic nature of
the update. This is also the most challenging part in our proof, which makes our analysis different
from standard convex analysis, and uniquely required due to non-convex setting.

Our key theorem is presented as follows:

Theorem 4.5. Let f(U) =
∥∥UU⊤ −M

∥∥2
F

and gi(U) =
∥∥e⊤i U

∥∥2. Suppose initial U0 satisfying:

f(U0) ≤
(
σmin(M)

20

)2

, max
i
gi(U0) ≤

10µkκ(M)2

d
‖M‖

Then, there exist some absolute constant c such that for any learning rate η < c
µdkκ3(M)‖M‖ log d ,

with at least 1− T
d10

probability, we will have for all t ≤ T that:

f(Ut) ≤ (1− 1

2
ησmin(M))t

(
σmin(M)

10

)2

, max
i
gi(Ut) ≤

20µkκ(M)2

d
‖M‖ (5)

Note function maxi gi(U) indicates the incoherence of matrix U. Theorem 4.5 guarantees if
inital U0 is in the local region which is incoherent and U0U

⊤
0 is close to M, then with high

probability for all steps t ≤ T , Ut, Ut will always stay in a slightly relaxed local region, and f(Ut)
has linear convergence.

It is not hard to show that all saddle point of f(U) satisfies σk(U) = 0, and all local minima

are global minima. Since U0, . . . ,Ut automatically stay in region f(U) ≤ (σmin(M)
10)2 with high

probability, we know Ut also stay away from all saddle points. The claim that U0, . . . ,Ut stays
incoherent is essential to better control the variance and probability 1 bound of SG(Ut), so that
we can have large step size and tight convergence rate.

The major challenging in proving Theorem 4.5 is to both prove Ut stays in the local region,
and achieve good sample complexity and running time (linear in d) in the same time. This also
requires the learning rate η in Algorithm 1 to be relatively large. Let the event Et denote the
good event where U0, . . . ,Ut satisfies Eq.(5). Theorem 4.5 is claiming that P (ET) is large. The
essential steps in the proof is contructing two supermartingles related to f(Ut)1Et

and gi(Ut)1Et

(where 1(·) denote indicator function), and use Bernstein inequalty to show the concentration of
supermartingales. The 1Et

term allow us the claim all previousU0, . . . ,Ut have all desired properties
inside local region.

Finally, we see Theorem 3.1 as a immediate corollary of Theorem 4.5.

5 Conclusion

In this paper, we presented the first provable, efficient online algorithm for matrix completion, based
on nonconvex SGD. In addition to the online setting, our results are also competitive with state of

10

the art results in the offline setting. We obtain our results by introducing a general framework that
helps us show how SGD updates self-regulate to stay away from saddle points. We hope our paper
and results help generate interest in online matrix completion, and our techniques and framework
prompt tighter analysis for other nonconvex problems.

References

[1] Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algo-
rithms for sparse coding. arXiv preprint arXiv:1503.00778, 2015.

[2] Matthew Brand. Fast online svd revisions for lightweight recommender systems. In SDM,
pages 37–46. SIAM, 2003.

[3] Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski. Phase
retrieval via matrix completion. SIAM Review, 57(2):225–251, 2015.

[4] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, December 2009.

[5] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,
Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video recommen-
dation system. In Proceedings of the fourth ACM conference on Recommender systems, pages
293–296. ACM, 2010.

[6] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of stochastic
gradient descent for some non-convex matrix problems. arXiv preprint arXiv:1411.1134, 2014.

[7] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. arXiv preprint arXiv:1503.02101, 2015.

[8] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
arXiv preprint arXiv:1605.07272, 2016.

[9] Marcus Hardt. Understanding alternating minimization for matrix completion. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 651–660. IEEE,
2014.

[10] Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits
for matrix completion. In COLT, pages 703–725, 2014.

[11] Prateek Jain, Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Computing matrix square-
root via non convex local search. arXiv preprint arXiv:1507.05854, 2015.

[12] Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford. Matching
matrix bernstein with little memory: Near-optimal finite sample guarantees for oja’s algorithm.
arXiv preprint arXiv:1602.06929, 2016.

[13] Prateek Jain and Praneeth Netrapalli. Fast exact matrix completion with finite samples. arXiv
preprint arXiv:1411.1087, 2014.

11

[14] Hui Ji, Chaoqiang Liu, Zuowei Shen, and Yuhong Xu. Robust video denoising using low rank
matrix completion. 2010.

[15] Raghunandan Hulikal Keshavan. Efficient algorithms for collaborative filtering. PhD thesis,
STANFORD UNIVERSITY, 2012.

[16] Yehuda Koren. The BellKor solution to the Netflix grand prize, 2009.

[17] Akshay Krishnamurthy and Aarti Singh. Low-rank matrix and tensor completion via adaptive
sampling. In Advances in Neural Information Processing Systems, pages 836–844, 2013.

[18] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent
converges to minimizers. University of California, Berkeley, 1050:16, 2016.

[19] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76–80, Jan 2003.

[20] Xin Luo, Yunni Xia, and Qingsheng Zhu. Incremental collaborative filtering recommender
based on regularized matrix factorization. Knowledge-Based Systems, 27:271–280, 2012.

[21] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix
factorization and sparse coding. The Journal of Machine Learning Research, 11:19–60, 2010.

[22] Ioannis Panageas and Georgios Piliouras. Gradient descent converges to minimizers: The case
of non-isolated critical points. arXiv preprint arXiv:1605.00405, 2016.

[23] Benjamin Recht. A simple approach to matrix completion, 2009.

[24] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 5(2):201–226, 2013.

[25] Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via nonconvex factorization.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
270–289. IEEE, 2015.

[26] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of compu-
tational mathematics, 12(4):389–434, 2012.

[27] Se-Young Yun, Marc Lelarge, and Alexandre Proutiere. Streaming, memory limited matrix
completion with noise. arXiv preprint arXiv:1504.03156, 2015.

12

A Proof of Initialization

In this section, we will prove Lemma 4.1 and a corresponding lemma for asymmetric case as follows
(which will be used to prove Theorem 3.3):

Lemma A.1. Assume M ∈ R
d1×d2 is a rank k matrix with µ-incoherence, and Ω is a subset

unformly i.i.d sampled from all coordinate. Let U0V
⊤
0 be the top-k SVD of d1d2

m
PΩ(M), where |Ω| =

m. Let d = max{d1, d2}. Then there exists universal constant c0, for any m ≥ c0µdk2κ2(M) log d,
with probability at least 1− 1

d10
, we have:

‖M−U0V
⊤
0 ‖F ≤

1

20
σmin(M),

max
i

∥∥∥e⊤i U0V
⊤
0

∥∥∥
2
≤ 10µk

d1
‖M‖ , max

j

∥∥∥e⊤j V0U
⊤
0

∥∥∥
2
≤ 10µk

d2
‖M‖ (6)

We will focus mostly on Lemma A.1, and prove Lemma 4.1 as a special case. Most of the
argument of this section follows from [15]. We include here for completeness. The remaining of this
section can be viewed as proving both the Frobenius norm claim and incoherence claim of Lemma
A.1 seperately.

In this section, We always denote d = max{d1, d2}. For simplicity, WLOG, we also assume
‖M‖ = 1 in all proof. Also, when it’s clear from the context, we use κ to specifically to repre-
sent κ(M). Then σmin(M) = 1

κ
. Also in the proof, we always denote SVD(M) = XSY⊤, and

SVD(UV⊤) = WUDW⊤
V
, where S and D are k × k diagonal matrix.

A.1 Frobenius Norm of Initialization

Theorem A.2 (Matrix Bernstein [26]). A finite sequence {Xt} of independent, random matrices
with dimension d! × d2. Assume that each matrix satisfies:

EXt = 0, and ‖Xt‖ ≤ R almost surely

Define

σ2 = max{
∥∥∥∥∥
∑

t

E(XtX
⊤
t)

∥∥∥∥∥ ,
∥∥∥∥∥
∑

t

E(X⊤
t Xt)

∥∥∥∥∥}

Then, for all s ≥ 0,

Pr(

∥∥∥∥∥
∑

t

Xt

∥∥∥∥∥ ≥ s) ≤ (d1 + d2) · exp(
−s2/2

σ2 +Rs/3
)

Lemma A.3. Let |Ω| = m, then there exists universal constant C, c0, for any m ≥ c0µdk log d,
with probability at least 1− 1

d10
, we have:

∥∥∥∥M−
d1d2
m
PΩ(M)

∥∥∥∥ ≤ C
√
µdk log d

m

Proof. We know ∥∥∥∥M−
d1d2
m
PΩ(M)

∥∥∥∥ =
d1d2
m

∥∥∥∥PΩ(M)− m

d1d2
M

∥∥∥∥

13

and note:
PΩ(M)− m

d1d2
M =

∑

ij

Mij(Zij −
m

d1d2
)eie

⊤
j

where Zij are independence Bernoulli(m/d1d2) random variables. Let matrix

ψij = Mij(Zij −
m

d1d2
)eie

⊤
j

By construction, we have: ∥∥∥∥∥∥

∑

ij

ψij

∥∥∥∥∥∥
=

∥∥∥∥PΩ(M)− m

d1d2
M

∥∥∥∥

Clearly Eψij = 0. Let XSY⊤ = SVD(M), then by µ-incoherence of M, with probability 1:

‖M‖∞ ≤ max
ij
|e⊤i XSY⊤ej| ≤ ‖M‖

µk√
d1d2

Also:
∥∥∥∥∥∥

∑

ij

E(ψijψ
⊤
ij)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

ij

EM2
ij(Zij −

m

d1d2
)2eie

⊤
i

∥∥∥∥∥∥
≤ m

d1d2
(1− m

d1d2
)

∥∥∥∥∥∥

∑

ij

M2
ijeie

⊤
i

∥∥∥∥∥∥

=
m

d1d2
(1− m

d1d2
)max

i

∑

j

M2
ij ≤

2m

d1d2

µk

d1
‖M‖2 = 2mµk

d21d2
‖M‖2

∥∥∥∥∥∥

∑

ij

E(ψ⊤
ijψij)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

ij

EM2
ij(Zij −

m

d1d2
)2eje

⊤
j

∥∥∥∥∥∥
≤ m

d1d2
(1− m

d1d2
)

∥∥∥∥∥∥

∑

ij

M2
ijeje

⊤
j

∥∥∥∥∥∥

=
m

d1d2
(1− m

d1d2
)max

j

∑

i

M2
ij ≤

2m

d1d2

µk

d2
‖M‖2 = 2mµk

d1d
2
2

‖M‖2

Then, by matrix Bernstein (Theorem A.2), we have:

Pr(

∥∥∥∥∥∥

∑

ij

ψij

∥∥∥∥∥∥
≥ s) ≤ 2(d1 + d2) · exp(

−s2/2
2mµdk

d2
1
d2
2

‖M‖2 + ‖M‖ µk

3
√
d1d2

s
)

That is, with probability at least 1− 1
d10

, for some universal constant C, we have:

∥∥∥∥PΩ(M)− m

d1d2
M

∥∥∥∥ ≤ C ‖M‖ ·max{
√
mµdk log d

d21d
2
2

,
µk log d√
d1d2

}

For m ≥ µdk log d, we finishes the proof.

Theorem A.4. Let U0V
⊤
0 be the top-k SVD of d1d2

m
PΩ(M), where |Ω| = m then there exists

universal constant c0, for any m ≥ c0µdk2κ2 log d, with probability at least 1− 1
d10

, we have:

∥∥∥M−U0V
⊤
0

∥∥∥
F
≤ 1

20κ

14

Proof. Since M is a rank k matrix, we know σk+1(M) = 0, thus

σk+1(
d1d2
m
PΩ(M)) ≤ σk+1(M) +

∥∥∥∥
d1d2
m
PΩ(M)−M

∥∥∥∥ =

∥∥∥∥
d1d2
m
PΩ(M)−M

∥∥∥∥

Therefore:

∥∥∥M−U0V
⊤
0

∥∥∥ ≤
∥∥∥∥M−

d1d2
m
PΩ(M)

∥∥∥∥+

∥∥∥∥
d1d2
m
PΩ(M)−U0V

⊤
0

∥∥∥∥

≤
∥∥∥∥M−

d1d2
m
PΩ(M)

∥∥∥∥+ σk+1(
d1d2
m
PΩ(M)) ≤ 2

∥∥∥∥M−
d1d2
m
PΩ(M)

∥∥∥∥

Meanwhile, since rank(M) = k, rank(U0V
⊤
0) = k, we know: rank(M−U0V

⊤
0) ≤ 2k, and therefore:

∥∥∥M−U0V
⊤
0

∥∥∥
F
≤
√
2k

∥∥∥M−U0V
⊤
0

∥∥∥ ≤ 2
√
2k

∥∥∥∥M−
d1d2
m
PΩ(M)

∥∥∥∥

by choosing m ≥ c0µdk
2 log d · κ2 for large enough constant c0 and apply Lemma A.3, we finishes

the proof.

A.2 Incoherence of Initialization

Lemma A.5. Let UV⊤ be the top-k SVD of d1d2
m
PΩ(M), where |Ω| = m. then there exists universal

constant c0, for any m ≥ c0µdkκ2 log d, with probability at least 1− 1
d10

, we have:

max
j

∥∥∥e⊤j (M⊤ −VU⊤)
∥∥∥ ≤ 2

√
µk

d2

Proof. Suppose SVD(M) = XSY⊤. Denote X̃ = XS
1

2 and Ỹ = YS
1

2 . Also let SVD(UV⊤) =
WUDW⊤

V
.

Then, we have:

∥∥∥e⊤j (M⊤ −VU⊤)
∥∥∥ =

∥∥∥∥e
⊤
j (M

⊤ − d1d2
m
PΩ(M)⊤WUW⊤

U)

∥∥∥∥

=

∥∥∥∥e
⊤
j (M

⊤ −M⊤WUW⊤
U +M⊤WUW⊤

U −
d1d2
m
PΩ(M)⊤WUW⊤

U)

∥∥∥∥

≤
∥∥∥e⊤j M⊤(I−WUW⊤

U)
∥∥∥+

∥∥∥∥e
⊤
j (M

⊤ − d1d2
m
PΩ(M)⊤)WUW⊤

U

∥∥∥∥

For the first term, since W⊤
U
WU,⊥ = 0, we have:

∥∥∥e⊤j M⊤(I−WUW⊤
U)

∥∥∥ ≤
∥∥∥e⊤j Y

∥∥∥
∥∥∥SX⊤WU,⊥W

⊤
U,⊥

∥∥∥

=

√
µk

d2

∥∥∥Y⊤(M⊤ −WVDW⊤
U)WU,⊥W

⊤
U,⊥

∥∥∥

≤
√
µk

d2

∥∥∥M⊤ −WVDW⊤
U

∥∥∥ ≤
√
µk

d2
· 1
κ

15

The last step is due to sample m ≥ µdkκ2 log d, and theorem A.4.
For the second term, we have:

∥∥∥∥e
⊤
j (
d1d2
m
PΩ(M)⊤ −M⊤)WUW⊤

U

∥∥∥∥ =

∥∥∥∥∥∥
Ỹ⊤

j (
d1d2
m

∑

i:(i,j)∈Ω
x̃iw

⊤
U,i −

∑

i

x̃iw
⊤
U,i)W

⊤
U

∥∥∥∥∥∥

≤
√
µk

d2
· d1d2
m
·

∥∥∥∥∥∥

∑

i:(i,j)∈Ω
x̃iw

⊤
U,i −

m

d1d2

∑

i

x̃iw
⊤
U,i

∥∥∥∥∥∥
(7)

Where x̃i and wU,i are the i-th row of X̃ and WU respectively.
Let φij = x̃iw

⊤
U,i(Zij− m

d1d2
), where Zij is Bernoulli(

m
d1d2

) random variable, Zij = 1 iff (i, j) ∈ Ω.
Clearly, we have Eφ = 0, and with probability 1:

‖φij‖ ≤ 2 ‖x̃i‖ ‖wU,i‖ ≤ 2

√
µk

d1
max

i

∥∥∥e⊤i WU

∥∥∥

Also, we have variance term:
∥∥∥∥∥
∑

i

Eφ⊤ijφij

∥∥∥∥∥ =

∥∥∥∥∥
∑

i

E(Zij −
m

d1d2
)2 ‖x̃i‖2wU,iw

⊤
U,i

∥∥∥∥∥

≤ m

d1d2
(1− m

d1d2
)max

i
‖x̃i‖2

∥∥∥∥∥
∑

i

wU,iw
⊤
U,i

∥∥∥∥∥

≤ m

d1d2

µk

d1

∥∥∥W⊤
UWU

∥∥∥ ≤ µkm

d21d2∥∥∥∥∥
∑

i

Eφijφ
⊤
ij

∥∥∥∥∥ =

∥∥∥∥∥
∑

i

E(Zij −
m

d1d2
)2 ‖wU,i‖2 x̃ix̃

⊤
i

∥∥∥∥∥

≤ m

d1d2
max

i

∥∥∥e⊤i WU

∥∥∥
2

Therefore, with m ≥ µdkκ2 log d, by matrix Bernstein, we have with probability at least 1− 1
d10

,
we know that for all j ∈ [d2], there exists some absolute constant C ′ so that:

∥∥∥∥∥∥

∑

i:(i,j)∈Ω
x̃iw

⊤
U,i −

m

d1d2

∑

i

x̃iw
⊤
U,i

∥∥∥∥∥∥
≤ C ′

√
m log d

d1d2
(

√
µk

d1
+max

i

∥∥∥e⊤i WU

∥∥∥)

Substitue into Eq.(7), this gives:

∥∥∥∥e
⊤
j (
d1d2
m
PΩ(M)⊤ −M⊤)WUW⊤

U

∥∥∥∥ ≤ C
′
√
µkd1 log d

m
(

√
µk

d1
+max

i

∥∥∥e⊤i WU

∥∥∥)

On the other hand, we also have:
∥∥∥e⊤i WU

∥∥∥ ≤
∥∥∥e⊤i WUS

∥∥∥
∥∥S−1

∥∥ = 2κ
∥∥∥e⊤i UV⊤

∥∥∥ ≤ 2κ(
∥∥∥e⊤i (UV⊤ −M)

∥∥∥+
∥∥∥e⊤i M

∥∥∥)

≤2κ(
√
µk

d1
+

∥∥∥e⊤i (UV⊤ −M)
∥∥∥)

16

This gives overall inequality:

max
j

∥∥∥e⊤j (VU⊤ −M⊤)
∥∥∥ ≤

√
µk

d2
· 1
κ
+ C ′′

√
µkd1 log d

m
κ(

√
µk

d1
+max

i

∥∥∥e⊤i (UV⊤ −M)
∥∥∥)

By symmetry, we will also have:

max
i

∥∥∥e⊤i (UV⊤ −M)
∥∥∥ ≤

√
µk

d1
· 1
κ
+C ′′

√
µkd2 log d

m
κ(

√
µk

d2
+max

j

∥∥∥e⊤j (VU⊤ −M⊤)
∥∥∥)

Combine above two equations and choose m ≥ c0µdkκ2 log d for some large enough c0. We have:

max
j

∥∥∥e⊤j (M⊤ −VU⊤)
∥∥∥ ≤ 2

√
µk

d2

This finishes the proof.

Theorem A.6. Let U0V
⊤
0 be the top-k SVD of d1d2

m
PΩ(M), where |Ω| = m. then there exists

universal constant c0, for any m ≥ c0µdkκ2 log d, with probability at least 1− 1
d10

, we have:

max
i

∥∥∥e⊤i U0V
⊤
0

∥∥∥
2
≤ 9µk

d1
and max

j

∥∥∥e⊤j V0U
⊤
0

∥∥∥
2
≤ 9µk

d2

Proof. By Theorem A.5, we know for any j ∈ [d2]:

∥∥∥e⊤j (M⊤ −V0U
⊤
0)

∥∥∥ ≤ 2

√
µk

d2

Therefore, we have:

∥∥∥e⊤j V0U
⊤
0

∥∥∥ ≤[
∥∥∥e⊤j M⊤

∥∥∥+
∥∥∥e⊤j (M⊤ −V0U

⊤
0)

∥∥∥] ≤ 3

√
µk

d2

By symmetry, we also know for any i ∈ [d1]

∥∥∥e⊤i U0V
⊤
0

∥∥∥ ≤ 3

√
µk

d1

Which finishes the proof.

For the special case where M ∈ R
d×d is symmetric and PSD, we can easily extends to have

following:

Corollary A.7. Let U0U
⊤
0 be the top-k SVD of d2

m
PΩ(M), where |Ω| = m. then there exists

universal constant c0, for any m ≥ c0µdkκ2 log d, with probability at least 1− 1
d10

, we have:

max
i

∥∥∥e⊤i U0

∥∥∥
2
≤ 10µkκ

d

17

Proof. By Corollary A.6, we have:

max
i

∥∥∥e⊤i U0U
⊤
0

∥∥∥
2
≤ 9µk

d

On the other hand, by Theorem A.4, we have:

σmin(U
⊤
0 U0) = σk(U0U

⊤
0) ≥ σk(M)−

∥∥∥M−U0U
⊤
0

∥∥∥ ≥ 9

10κ

Therefore, for any i ∈ [d] we have:

∥∥∥e⊤i U0

∥∥∥
2
≤

∥∥e⊤i U0U
⊤
0

∥∥2

σmin(U⊤
0 U0)

≤ 10µkκ

d

Which finishes the proof.

Finally, Lemma A.1 can be easily concluded from Theorem A.4 and Theorem A.6, while Lemma
4.1 is also directly proved by Theorem A.4 and Corollary A.7.

B Proof of Symmetric PSD Case

In this section, we prove Theorem 3.1. WLOG, we continue to assume ‖M‖ = 1 in all proof. Also,
when it’s clear from the context, we use κ to specifically to represent κ(M). Then σmin(M) = 1

κ
.

Also in this section, we always denote SVD(M) = XSX⊤, and SVD(UU⊤) = WDW⊤.
The most essential part to prove Theorem 3.1 is proving following Theorem:

Theorem B.1 (restatement of Theorem 4.5). Let f(U) =
∥∥UU⊤ −M

∥∥2
F

and gi(U) =
∥∥e⊤i U

∥∥2.
Suppose after initialization, we have:

f(U0) ≤
(

1

20κ

)2

, max
i
gi(U0) ≤

10µkκ2

d

Then, there exist some absolute constant c such that for any learning rate η < c
µdkκ3 log d , with at

least 1− T
d10

probability, we will have for all t ≤ T that:

f(Ut) ≤ (1− η

2κ
)t
(

1

10κ

)2

, max
i
gi(Ut) ≤

20µkκ2

d

Theorem B.1 says once initialization algorithm provides U0 in good local region, with high
probability Ut will always stay in this good region and f(Ut) is linear converging to 0. With this
theorem, we can then immediately conclude Theorem 3.1 from Theorem B.1 and Lemma 4.1.

The rest of this section all focus on proving Theorem B.1. First, we prepare with a few lemmas
about the property of objective function, and the spectral property of U in a local Frobenius ball
around optimal. Then, we prove Theorem B.1 by constructing two supermartingales related to
f(Ut), gi(Ut) each, and applying concentration argument.

For symmetric PSD case, we denote the stochastic gradient as:

SG(U) = 2d2(UU⊤ −M)ij(eie
⊤
j + eje

⊤
i)U

18

The update in Algorithm 1 can be now written as:

Ut+1 ← Ut − ηSG(Ut) (8)

We immediately have the property:

ESG(U) = ∇f(U) = 4(UU⊤ −M)U

B.1 Geometric Properties in Local Region

First, we prove two lemmas w.r.t the smoothness and property similar to strongly convex for
objective function:

Lemma B.2. (restatement of Lemma 4.2) Within the region D = {U| ‖U‖ ≤ Γ}, we have function
f(U) = ‖M−UU⊤‖2F satisfying for any U1,U2 ∈ D:

‖∇f(U1)−∇f(U2)‖F ≤ β‖U1 −U2‖F

where smoothness parameter β = 16max{Γ2, ‖M‖}.

Proof. Inside region D, we have:

‖∇f(U1)−∇f(U2)‖F
=‖4(U1U

⊤
1 −M)U1 − 4(U2U

⊤
2 −M)U2‖F

≤4‖U1U
⊤
1 U1 −U2U

⊤
2 U2‖F + 4‖M(U1 −U2)‖F

=4‖U1U
⊤
1 (U1 −U2) +U1(U1 −U2)

⊤U2 + (U1 −U2)U
⊤
2 U2‖F + 4‖M(U1 −U2)‖F

≤12max{‖U1‖2 , ‖U2‖2}‖U1 −U2‖F + 4 ‖M‖ ‖U1 −U2‖F
≤16max{Γ2, ‖M‖}‖U1 −U2‖F

Lemma B.3. (restatement of Lemma 4.3) Within the region D = {U|σmin(X
⊤U) ≥ γ}, then we

have function f(U) = ‖M−UU⊤‖2F satisfying:

‖∇f(U)‖2F ≥ αf(U)

where constant α = 4γ2.

Proof. Inside region D, recall we denote WDW⊤ = SVD(UU⊤), thus we have:

‖∇f(U)‖2F = 16‖(UU⊤ −M)U‖2F
=16[‖PW(UU⊤ −M)U‖2F + ‖PW⊥

(UU⊤ −M)U‖2F]
≥16[σmin(D)‖PW(UU⊤ −M)PW‖2F + ‖PW⊥

MU‖2F]
≥16[σmin(D)‖UU⊤ − PWMPW‖2F + ‖PW⊥

MU‖2F]

On the other hand, we have:

‖PW⊥
MU‖2F = ‖PW⊥

XΣX⊤U‖2F ≥ σ2min(X
⊤U)‖PW⊥

XΣ‖2F
=σ2min(X

⊤U)tr(PW⊥
M2PW⊥

) = σ2min(X
⊤U)‖PW⊥

M‖2F

19

and
σmin(D) = λmin(U

⊤U) ≥ λmin(U
⊤PXU) = σ2min(X

⊤U)

Therefore, combine all above, we have:

‖∇f(U)‖2F ≥ 16σ2min(X
⊤U)[‖UU⊤ − PWMPW‖2F + ‖PW⊥

M‖2F]
≥4σ2min(X

⊤U)[‖UU⊤ − PWMPW‖2F + ‖PW⊥
MPW‖2F + ‖PWMPW⊥

‖2F + ‖PW⊥
MPW⊥

‖2F]
=4σ2min(X

⊤U)‖UU⊤ −M‖2F

Next, we show as long as we are in some Frobenious ball around optimum, then we have good
spectral property over U which guarantees the preconditions for Lemma B.2 and Lemma B.3.

Lemma B.4. (restatement of Lemma 4.4) Within the region D = {U|
∥∥M−UU⊤∥∥

F
≤ 1

10σk(M)},
we have:

‖U‖ ≤
√

2 ‖M‖, σmin(X
⊤U) ≥

√
σk(M)/2

Proof. For spectral norm of U, we have:

‖U‖2 ≤ ‖M‖+
∥∥∥M−UU⊤

∥∥∥ ≤ ‖M‖+
∥∥∥M−UU⊤

∥∥∥
F
≤ 2 ‖M‖

For the minimum singular value of U⊤U, we have:

σmin(U
⊤U) =σk(UU⊤) ≥ σk(M)−

∥∥∥M−UU⊤
∥∥∥

≥σk(UU⊤) ≥ σk(M)−
∥∥∥M−UU⊤

∥∥∥
F
≥ 9

10
σk(M)

On the other hand, we have:

9

10
σk(M) ‖X⊥W‖2 ≤σmin(D) ‖X⊥W‖2 ≤

∥∥∥X⊤
⊥WΣW⊤X⊥

∥∥∥

≤
∥∥∥X⊤

⊥UU⊤X⊥
∥∥∥
F
=

∥∥∥PX⊥
(M−UU⊤)PX⊥

∥∥∥
F

≤
∥∥∥M−UU⊤

∥∥∥
F
≤ 1

10
σk(M)

Let the principal angle between X and W to be θ. This gives sin2 θ =
∥∥X⊤

⊥W
∥∥2 ≤ 1

9 . Thus
cos2 θ = σ2min(X

⊤W) ≥ 8
9 . Therefore:

σ2min(X
⊤U) ≥ σ2min(X

⊤W)σmin(U
⊤U) ≥ σk(M)/2

20

B.2 Proof of Theorem B.1

Now, we are ready for our key theorem. By Lemma B.2, Lemma B.3, and Lemma B.4, we already
know the function has good property locally in the region D = {U|

∥∥M−UU⊤∥∥
F
≤ 1

10σk(M)}
which alludes linear convergence. Then, the work remains and also the most challenging part is
to prove that once we initialize inside this region, our algorithm will guarantee U never leave this
region with high probability even with relatively large stepsize. The requirement for tight sample
complexity and near optimal runtime makes it more challenging, and require us to further control
the incoherence of Ut over all iterates in addition to the distance

∥∥M−UU⊤∥∥
F
.

Following is our formal proof.

Proof of Theorem B.1. Define event Et = {∀τ ≤ t, f(Uτ) ≤ (1− η
2κ)

t(1
10κ)

2,maxi gi(Uτ) ≤ 20µkκ2

d
}.

Theorem B.1 is equivalent to prove event ET happens with high probability. The proof achieves
this by contructing two supermartingales for f(Ut)1Et

and gi(Ut)1Et
(where 1(·) denote indicator

function), applies concentration argument.
The proofs follow the structure of:

1. The constructions of supermartingales

2. Their probability 1 bound and variance bound in order to apply Azuma-Bernstein inequality

3. Final combination of concentration results to conclude the proof

First, let filtration Ft = σ{SG(U0), · · · , SG(Ut−1)} where σ{·} denotes the sigma field. Note
by definiton of Et, we have Et ⊂ Ft. Also Et+1 ⊂ Et, and thus 1Et+1

≤ 1Et
. Note Et denotes the

event which up to time t, Uτ always stay in a local region which both close to M and incoherent.
By Lemma B.4, we immediately know that conditioned on Et, we have ‖Ut‖ ≤

√
2, σmin(X

⊤Ut) ≥
1/
√
2κ and σmin(U

⊤
t Ut) ≥ 1/2κ. We will use this fact throughout the proof.

Construction of supermartingale G: Since gi(U) = e⊤i UU⊤ei is a quadratic function, we
know for any change ∆U, we have:

gi(U+∆U) = gi(U) + 2e⊤i (∆U)U⊤ei +
∥∥∥e⊤i ∆U

∥∥∥
2

We know for any l ∈ [d]:

E‖e⊤l SG(U)‖21Et
≤ E16d4δil(u

⊤
i uj −Mij)

2 max
i

∥∥∥e⊤i U
∥∥∥
2
1Et

=16d2
∥∥∥e⊤l (UU⊤ −M)

∥∥∥
2
max

i

∥∥∥e⊤i U
∥∥∥
2
1Et
≤ O(µ2k2κ4)1Et

21

Therefore, by update Eq.(8), and ESG(U) = ∇f(U) = 4(UU⊤ −M)U, we know:

E[gi(Ut+1)1Et
|Ft]

=[gi(Ut)− 2ηe⊤i [ESG(Ut)]U
⊤
t ei +

η2

2
E

∥∥∥e⊤i SG(Ut)
∥∥∥
2
]1Et

=[tr(U⊤
t eie

⊤
i [I− 8η(UtU

⊤
t −M)]Ut) +

η2

2
E

∥∥∥e⊤i SG(Ut)
∥∥∥
2
]1Et

=[tr(U⊤
t eie

⊤
i Ut(I− 8ηU⊤

t Ut)) + 8ηtr(U⊤
t eie

⊤
i MUt) + η2O(µ2k2κ4)]1Et

≤[(1− 8ησmin(U
⊤
t Ut))gi(Ut) + 8ηtr(U⊤

t eie
⊤
i MUt) + η2O(µ2k2κ4)]1Et

≤[(1− 4η

κ
)gi(Ut) + 16

√
10
ηµkκ

d
+ η2O(µ2k2κ4)]1Et

≤[(1− 4η

κ
)gi(Ut) + 60

ηµkκ

d
)]1Et

The last step is true by choosing constant c in learning rate η to be small enough.

Let Git = (1− 4η
κ
)−t(gi(Ut)1Et−1

− 15µkκ2

d
). This gives:

EGi(t+1) ≤ (1− 4η

κ
)−t(gi(Ut)1Et

− 15
µkκ2

d
) ≤ Git

That is Git is supermartingale.

Probability 1 bound for G: We also know

Git − E[Git|Ft−1] =(1− 4η

κ
)−t

[
−ηe⊤i [SG(Ut)− ESG(Ut)]U

⊤
t ei

+
η2

2
[‖e⊤i SG(Ut)‖2 − E‖e⊤i SG(Ut)‖2]

]
1Et−1

(9)

Since when sample (i, j) entry of matrix M, for any l ∈ [d], we have:

e⊤l [SG(Ut)]U
⊤
t el · 1Et−1

= O(1)tr(U⊤ele
⊤
l SG(Ut))1Et−1

=O(1)d2(UU⊤ −M)ijtr[U
⊤ele

⊤
l (eiu

⊤
j + eju

⊤
i)]1Et−1

≤O(1)d2
∥∥∥UU⊤ −M

∥∥∥
∞
max

i

∥∥∥e⊤i U
∥∥∥
2
1Et−1

≤ O(µ2k2κ4)1Et−1

and

‖e⊤l SG(Ut)‖21Et−1
= O(1)

∥∥∥e⊤l SG(Ut)
∥∥∥
2
1Et−1

=O(1)d4(UU⊤ −M)2ij

∥∥∥e⊤l (eiu⊤
j + eju

⊤
i)

∥∥∥
2
1Et−1

≤O(1)d4
∥∥∥UU⊤ −M

∥∥∥
2

∞
max

i

∥∥∥e⊤i U
∥∥∥
2
1Et−1

≤ O(µ3dk3κ6)1Et−1

Therefore, by Eq.(9), we have with probability 1:

|Git − E[Git|Ft−1]| ≤ (1− 4η

κ
)−tηO(µ2k2κ4)1Et−1

(10)

22

Variance bound for G: For any l ∈ [d], we also know

Var(e⊤l [SG(Ut)]U
⊤
t el · 1Et−1

|Ft−1) ≤ E[〈∇gl(Ut), SG(Ut)〉21Et−1
|Ft−1]

=O(1)
1

d2

∑

ij

d4(UU⊤ −M)2ijtr[U
⊤ele

⊤
l (eiu

⊤
j + eju

⊤
i)]

21Et−1

≤O(1)d2
∑

j

(UU⊤ −M)2ljtr[U
⊤elu

⊤
j]

21Et−1

≤O(1)d2
∥∥∥e⊤l (UU⊤ −M)

∥∥∥
2
max

i

∥∥∥e⊤i U
∥∥∥
4
1Et−1

≤ O(
µ3k3κ6

d
)1Et−1

and

Var(‖e⊤l SG(U)‖21Et−1
|Ft−1) ≤ E[∇2gk(SG(Ut), SG(Ut))

21Et−1
|Ft−1]

=O(1)
1

d2

∑

ij

d8(UU⊤ −M)4ij

∥∥∥e⊤k (eiu⊤
j + eju

⊤
i)

∥∥∥
4
1Et−1

≤O(1)d6
∑

j

(UU⊤ −M)4kj ‖uj‖4 1Et−1

≤O(1)d6
∥∥∥UU⊤ −M

∥∥∥
2

∞

∥∥∥e⊤k (UU⊤ −M)
∥∥∥
2
max

i

∥∥∥e⊤i U
∥∥∥
4
1Et−1

≤ O(µ5dk5κ10)1Et−1

Therefore, by Eq.(9), we have

Var(Git|Ft−1) ≤ (1− 4η

κ
)−2tη2O(

µ3k3κ6

d
)1Et−1

(11)

Bernstein’s inequality for G: Let σ2 =
∑t

τ=1Var(Giτ |Fτ−1), and R satisfies, with probability
1 that |Giτ−E[Giτ |Fτ−1]| ≤ R, τ = 1, · · · , t. Then By standard Bernstein concentration inequality,
we know:

P (Git ≥ Gi0 + s) ≤ exp(
s2/2

σ2 +Rs/3
)

Since Gi0 = gi(U0)− 15µkκ2

d
, let s′ = O(1)(1 − 4η

κ
)t[
√
σ2 log d+R log d], we know

P

(
gi(Ut)1Et−1

≥ 15
µkκ2

d
+ (1− 4η

κ
)t(gi(U0)− 15

µkκ2

d
) + s′

)
≤ 1

2d11

By Eq.(10), we know R = (1 − 4η
κ
)−tηO(µ2k2κ4) satisfies that |Giτ − E[Giτ |Fτ−1]| ≤ R, τ =

1, · · · , t. Also by Eq. (11), we have:

(1− 4η

κ
)t
√
σ2 log d ≤ ηO(

√
µ3k3κ6 log d

d
)

√√√√
t∑

τ=1

(1− 4η

κ
)2t−2τ ≤ √ηO(

√
µ3k3κ7 log d

d
)

by η < c
µdkκ3 log d and choosing c to be small enough, we have:

s′ =
√
ηO(

√
µ3k3κ7 log d

d
) + ηO(µ2k2κ4 log d) ≤ µkκ2

d

23

Since initialization gives maxi gi(U0) ≤ 10µkκ2

d
, therefore:

P (gi(Ut)1Et−1
≥ 20

µkκ2

d
) ≤ 1

2d11

That is equivalent to:

P (Et−1 ∩ {gi(Ut) ≥ 20
µkκ2

d
}) ≤ 1

2d11
(12)

Construction of supermartingale F : On the other hand, we also have

E‖SG(Ut)‖2F 1Et
≤ E16d4(u⊤

i uj −Mij)
2 max

i

∥∥∥e⊤i U
∥∥∥
2
1Et

≤16d2‖UtU
⊤
t −M‖2F max

i

∥∥∥e⊤i Ut

∥∥∥
2
1Et
≤ O(µdkκ2)f(Ut)1Et

Therefore, by update function Eq.(8),

E[f(Ut+1)1Et
|Ft]

≤[f(Ut)− E〈∇f(Ut), ηSG(Ut)〉+ η2E ‖SG(Ut)‖2F]1Et

=[f(Ut)− η ‖∇f(Ut)‖2F + η2E ‖SG(Ut)‖2F]1Et

≤[(1 − 2η

κ
)f(Ut) + η2O(µdkκ2)f(Ut)]1Et

≤(1− η

κ
)f(Ut)1Et

Let Ft = (1− η
κ
)−tf(Ut)1Et−1

, we know Ft is also a supermartingale.

Probability 1 bound for F : With probabilty 1, we also have:

Ft − E[Ft|Ft−1] =(1− η

κ
)−t[−η〈∇f(Ut), SG(Ut)− ESG(Ut)〉

+
η2

2
(∇2f(ζt)(SG(Ut), SG(Ut))− E∇2f(ζt)(SG(Ut), SG(Ut)))]1Et−1

(13)

where ζt depends on SG(Ut).
First, recall we denote SVD(M) = XSX⊤, and SVD(UU⊤) = WDW⊤ , and observe that:

∥∥∥UU⊤ −M

∥∥∥
∞
1Et−1

= max
ij
|tr(e⊤i (UU⊤ −M)ej)|1Et−1

=max
ij
|tr(e⊤i (PX + PX⊥

)(UU⊤ −M)ej)|1Et−1

≤max
ij
|tr(e⊤i PX(UU⊤ −M)ej)|1Et−1

+max
ij
|tr(e⊤i PX⊥

UU⊤ej)|1Et−1

≤max
i

∥∥∥e⊤i X
∥∥∥
∥∥∥UU⊤ −M

∥∥∥
F
1Et−1

+max
i

∥∥∥e⊤i W
∥∥∥
∥∥∥UU⊤ −M

∥∥∥
F
1Et−1

≤O(

√
µkκ3

d
)
√
f(Ut)

24

Then, when sample (i, j) entry of matrix M, we have:

〈∇f(Ut), SG(Ut)〉1Et−1
≤ O(1) ‖∇f(Ut)‖F ‖SG(Ut)‖F 1Et−1

≤O(1)d2
√
f(Ut)(UU⊤ −M)ij

∥∥∥eiu⊤
j + eju

⊤
i

∥∥∥
2

F
1Et−1

≤O(1)d2
√
f(Ut)

∥∥∥UU⊤ −M

∥∥∥
∞
max

i

∥∥∥e⊤i U
∥∥∥ 1Et−1

≤ O(µdkκ2.5)f(Ut)1Et−1

and

∇2f(ζt)(SG(Ut), SG(Ut))1Et−1
≤ O(1) ‖SG(Ut)‖2F

≤O(1)d4
∥∥∥UU⊤ −M

∥∥∥
2

∞
max

i

∥∥∥e⊤i U
∥∥∥
2
1Et−1

≤ O(µ2d2k2κ5)f(Ut)1Et−1

Therefore, by decomposition Eq.(13), we have with probability 1:

|Ft−E[Ft|Ft−1]| ≤ (1− η
κ
)−tηO(µdkκ2.5)f(Ut−1)1Et−1

≤ (1− η
κ
)−t(1− η

2κ
)tηO(µdkκ0.5)1Et−1

(14)

Variance bound for F : We also know

Var(〈∇f(Ut), SG(Ut)〉1Et−1
|Ft−1) ≤ E[〈∇f(Ut), SG(Ut)〉21Et−1

|Ft−1]

≤‖∇f(Ut)‖2F E ‖SG(Ut)‖2F 1Et−1
≤ O(1)d2 max

i

∥∥∥e⊤i U
∥∥∥
2
f2(Ut−1)1Et−1

≤O(µdkκ2)f2(Ut−1)1Et−1

and

Var(∇2f(ζt)(SG(Ut), SG(Ut))1Et−1
|Ft−1) ≤ E[∇2f(ζt)(SG(Ut), SG(Ut))

21Et−1
|Ft−1]

≤O(1)E ‖SG(Ut)‖4F = O(1)Ed8(UU⊤ −M)4ij max
i

∥∥∥e⊤i U
∥∥∥
4
1Et−1

≤O(1)d6
∥∥∥UU⊤ −M

∥∥∥
2

∞

∥∥∥UU⊤ −M

∥∥∥
2

F
max

i

∥∥∥e⊤i U
∥∥∥
4
1Et−1

≤O(µ3d3k3κ7)f2(Ut−1)1Et−1

Therefore, by decomposition Eq.(13), we have:

Var(Ft|Ft−1) ≤ (1− η

κ
)−2tη2O(µdkκ2)f2(Ut−1)1Et−1

≤ (1− η

κ
)−2t(1− η

2κ
)2tη2O(

µdk

κ2
)1Et−1

(15)

Bernstein’s inequality for F : Let σ2 =
∑t

τ=1 Var(Fτ |Fτ−1), and R satisfies, with probability
1 that |Fτ −E[Fτ ||Fτ−1]| ≤ R, τ = 1, · · · , t. Then By standard Bernstein concentration inequality,
we know:

P (Ft ≥ F0 + s) ≤ exp(
s2/2

σ2 +Rs/3
)

Let s′ = O(1)(1 − η
κ
)t[
√
σ2 log d+R log d], this gives:

P (f(Ut)1Et−1
≥ (1− η

κ
)tf(U0) + s′) ≤ 1

2d10

25

By Eq.(14), we know R = (1− η
κ
)−t(1− η

2κ)
tηO(µdkκ0.5) satisfies that |Fτ −E[Fτ |Fτ−1]| ≤ R, τ =

1, · · · , t. Also by Eq. (15), we have:

(1− η

κ
)t
√
σ2 log d ≤ ηO(

√
µdk log d

κ2
)

√√√√
t∑

τ=1

(1− η

κ
)2t−2τ (1− η

2κ
)2τ

≤(1− η

2κ
)tηO(

√
µdk log d

κ2
)

√√√√
t∑

τ=1

(1− η

κ
)2t−2τ (1− η

2κ
)2τ−2t ≤ (1− η

2κ
)t
√
ηO(

√
µdk log d

κ
)

by η < c
µdkκ3 log d and choosing c to be small enough, we have:

s′ = (1− η

2κ
)t[
√
ηO(

√
µdk log d

κ
) + ηO(µdkκ0.5)] ≤ (1− η

2κ
)t(

1

20κ
)2

Since F0 = f(U0) ≤ (1
20κ)

2, therefore:

P (f(Ut)1Et−1
≥ (1− η

2κ
)t(

1

10κ
)2) ≤ 1

2d10

That is equivalent to:

P (Et−1 ∩ {f(Ut) ≥ (1− η

2κ
)t(

1

10κ
)2}) ≤ 1

2d10
(16)

Probability for event ET : Finally, combining the concentration result for martingaleG (Eq.(12))
and martingale F (Eq.(16)), we conclude:

P (Et−1 ∩ Ēt) = P

[
Et−1 ∩

(
∪i{gi(Ut) ≥ 20

µkκ2

d
} ∪ {f(Ut) ≥ (1− η

2κ
)t(

1

10κ
)2}

)]

≤
d∑

i=1

P (Et−1 ∩ {gi(Ut) ≥ 20
µkκ2

d
}) + P (Et−1 ∩ {f(Ut) ≥ (1− η

2κ
)t(

1

10κ
)2}) ≤ 1

d10

Since

P (ĒT) =

T∑

t=1

P (Et−1 ∩ Ēt) ≤
T

d10

We finishes the proof.

C Proof of General Asymmetric Case

In this section, we first prove Lemma 3.2, set up the equivalence between Algorithm 2 and Algorithm
3. Then we prove the main theorem for general asymmetric matrix (Theorem 3.3). WLOG,
we continue to assume ‖M‖ = 1 in all proof. Also, when it’s clear from the context, we use
κ to specifically to represent κ(M). Then σmin(M) = 1

κ
. Also in this section, we always use

d = max{d1, d2} and denote SVD(M) = XSY⊤, and SVD(UV⊤) = WUDW⊤
V .

26

Proof of Lemma 3.2. Let us always denote the iterates in Algorithm 2 by Ut, Vt, and denote the
corresponding iterates in Algorithm 3 by U′

t, V
′
t using prime version. We use induction to prove

the equivalence. Assume at time t we have UtV
⊤
t = U′

tV
′
t
⊤. Recall in Algorithm 2, we renormalize

Ut,Vt to Ũt, Ṽt, this set up the correspondence:

Ũt = U′
tR

′
UD

′
U
− 1

2Q′
UD

′ 1
2

Ṽt = V′
tR

′
V D

′
V
− 1

2Q′
V D

′ 1
2

Denote P′
U = R′

UD
′
U
− 1

2Q′
UD

′ 1
2 , and P′

V = V′
tR

′
V D

′
V
− 1

2Q′
V D

′ 1
2 . Clearly P′

UP
′
V
⊤ = I. Then we

have Ũt = U′
tP

′
U , Ṽt = P′

V and thus:

Ut+1V
⊤
t+1

=(Ũt − 2ηd1d2(ŨtṼ
⊤
t −M)ijeie

⊤
j Ṽt)(Ṽt − 2ηd1d2(ŨtṼ

⊤
t −M)ijeje

⊤
i Ũt)

⊤

=(U′
tP

′
U − 2ηd1d2(U

′
tV

′
t
⊤ −M)ijeie

⊤
j V

′
tP

′
V)(V

′
tP

′
V − 2ηd1d2(U

′
tV

′
t
⊤ −M)ijeje

⊤
i U

′
tP

′
U)

⊤

=(U′
t − 2ηd1d2(U

′
tV

′
t
⊤ −M)ijeie

⊤
j V

′
tP

′
V P

′
U
−1)

· (V′
t − 2ηd1d2(U

′
tV

′
t
⊤ −M)ijeje

⊤
i U

′
tP

′
UP

′
V
−1)⊤

=U′
t+1V

′
t+1

⊤

Clearly with same initialization algorithm, we have U0V
⊤
0 = U′

0V
′
0
⊤, by induction, we finish the

proof.

Now we proceed to prove Theorem 3.3. Since Algorithm 2 and Algorithm 3 are equivalent, we
will focus our analysis on Algorithm 2 which is more theoretical appealing. As for the symmetric
PSD case, we first present the essential ingradient:

Theorem C.1. Let f(U,V) =
∥∥UV⊤ −M

∥∥2
F
, gi(U,V) =

∥∥e⊤i UV⊤∥∥2, and hj(U,V) =
∥∥∥e⊤j VU⊤

∥∥∥
2
,

for i ∈ [d1] and j ∈ [d2]. Suppose after initialization, we have:

f(U0,V0) ≤ (
1

20κ
)2, max

i
gi(U0,V0) ≤

10µkκ2

d1
, max

j
hj(U0,V0) ≤

10µkκ2

d2

Then, there exist some absolute constant c such that for any learning rate η < c
µdkκ3 log d

, with at

least 1− T
d10

probability, we will have for all t ≤ T that:

f(Ut,Vt) ≤ (1− η

2κ
)t(

1

10κ
)2, max

i
gi(Ut,Vt) ≤

100µkκ2

d1
, max

j
hj(Ut,Vt) ≤

100µkκ2

d2

Theorem 3.3 can easily be concluded from Theorem C.1 and Lemma A.1. Theorem C.1 also
provides similar guarantees as Theorem B.1 in symmetric case. However, due to the additional
invariance between U and V, Theorem C.1 need to keep track of more complicated potential
function gi(U,V) and hj(U,V) to control the incoherence, which makes the proof more involved.

The rest of this section all focus on proving Theorem C.1. Similar to symmetric PSD case, we
also first prepare with a few lemmas about the property of objective function, and the spectral
property of U,V in a local Frobenius ball around optimal. Then, we prove Theorem C.1 by
constructing three supermartingales related to f(Ut,Vt), gi(Ut,Vt), hj(Ut,Vt) each, and applying
concentration argument.

27

To make the notation clear, denote gradient ∇f(U,V) ∈ R
(d1+d2)×k:

∇f(U,V) =

(
∂
∂U
f(U,V)

∂
∂V
f(U,V)

)

Also denote the stochastic gradient SG(U,V) by (if we sampled entry (i, j) of matrix M)

SG(U,V) = 2d1d2(UV⊤ −M)ij

(
eie

⊤
j V

eje
⊤
i U

)

ESG(U,V) = ∇f(U,V) = 2

(
(UV⊤ −M)V
(UV⊤ −M)⊤U

)

By update function, we know:

(
Ut+1

Vt+1

)
=

(
Ũt

Ṽt

)
− ηSG(Ũt, Ṽt)

and ŨtṼ
⊤
t = UtV

⊤
t is the renormalized version of UtV

⊤
t .

C.1 Geometric Properties in Local Region

Similar to symmetric PSD case, we first prove two lemmas w.r.t the smoothness and property
similar to strongly convex for objective function:

Lemma C.2. Within the region D = {(U,V)| ‖U‖ ≤ Γ, ‖V‖ ≤ Γ}, we have function f(U,V) =
‖M−UV⊤‖2F satisfying:

‖∇f(U1,V1)−∇f(U2,V2)‖2F ≤ β2(‖U1 −U2‖2F + ‖V1 −V2‖2F)

where smoothness parameter β = 8max{Γ2, ‖M‖}.

Proof. Inside region D, we have:

‖∇f(U1,V1)−∇f(U2,V2)‖2F
=‖ ∂

∂U
f(U1,V1)−

∂

∂U
f(U2,V2)‖2F + ‖ ∂

∂V
f(U1,V1)−

∂

∂V
f(U2,V2)‖2F

=4(‖(U1V
⊤
1 −M)V1 − (U2V

⊤
2 −M)V2‖2F + ‖(U1V

⊤
1 −M)⊤U1 − (U2V

⊤
2 −M)⊤U2‖2F)

≤64max{Γ4, ‖M‖2}(‖U1 −U2‖2F + ‖V1 −V2‖2F)

The last step is by similar technics as in the proof of Lemma B.2, by expanding

U1V
⊤
1 V1 −U2V

⊤
2 V2 = (U1 −U2)V

⊤
1 V1 +U2(V1 −V2)

⊤V1 +U2V
⊤
2 (V1 −V2)

Lemma C.3. Within the region D = {(U,V)|σmin(X
⊤U) ≥ γ, σmin(Y

⊤V) ≥ γ}, then we have
function f(U,V) = ‖M−UV⊤‖2F satisfying:

‖∇f(U,V)‖2F ≥ αf(U,V)

where constant α = 4γ2.

28

Proof. Let Û, V̂ be the left singular vectors of U,V. Inside region D, we have:

‖(UV⊤ −M)V‖2F
=‖P

Û
(UV⊤ −M)V‖2F + ‖P

Û⊥
(UV⊤ −M)V‖2F

≥σk(V)2‖P
Û
(UV⊤ −M)P

V̂
‖2F + ‖P

Û⊥
MV‖2F

≥σk(V)2‖P
Û
(UV⊤ −M)P

V̂
‖2F + σmin(Y

⊤V)2‖P
Û⊥

XΣ‖2F
=σk(V)2‖P

Û
(UV⊤ −M)P

V̂
‖2F + σmin(Y

⊤V)2‖P
Û⊥

M‖2F
Therefore, by symmetry, we have:

‖∇f(U,V)‖2F =4(‖(UV⊤ −M)V‖2F + ‖(UV⊤ −M)⊤U‖2F)
≥4γ2(2‖P

Û
(UV⊤ −M)P

V̂
‖2F + ‖P

Û⊥
M‖2F + ‖MP

V̂⊥
‖2F)

≥4γ2‖UV⊤ −M‖2F

Next, we show as long as we are in some Frobenious ball around optimum, then we have good
spectral property over U,V which guarantees the preconditions for Lemma C.2 and Lemma C.3.

Lemma C.4. Within the region D = {(U,V)|
∥∥M−UV⊤∥∥

F
≤ 1

10σk(M)}, and for U = WUD
1

2 ,V =

WV D
1

2 where WUDWV = SVD(UV⊤), we have:

‖U‖ ≤
√

2 ‖M‖, σmin(X
⊤U) ≥

√
σk(M)/2

‖V‖ ≤
√

2 ‖M‖, σmin(Y
⊤V) ≥

√
σk(M)/2

Proof. For spectral norm of U, we have:

‖U‖2 = ‖D‖ =
∥∥∥UV⊤

∥∥∥ ≤ ‖M‖+
∥∥∥M−UV⊤

∥∥∥ ≤ ‖M‖+
∥∥∥M−UV⊤

∥∥∥
F
≤ 2 ‖M‖

For the minimum singular value of U⊤U, we have:

σmin(U
⊤U) =σk(D) = σk(UV⊤) ≥ σk(M)−

∥∥∥M−UV⊤
∥∥∥

≥σk(M)−
∥∥∥M−UU⊤

∥∥∥
F
≥ 9

10
σk(M)

By symmetry, the same holds for V. On the other hand, we have:

1

10
σk(M) ≥

∥∥∥M−UV⊤
∥∥∥
F
≥

∥∥∥PX⊥
(M−UV⊤)

∥∥∥
F
=

∥∥∥PX⊥
UV⊤

∥∥∥
F
= ‖PX⊥

WUD‖F

≥‖PX⊥
WUD‖ ≥

9

10
σk(M) ‖X⊥WU‖

Let the principal angle between X and WU to be θ. This gives sin2 θ =
∥∥X⊤

⊥WU

∥∥2 ≤ 1
9 . Thus

cos2 θ = σ2min(X
⊤WU) ≥ 8

9 . Therefore:

σ2min(X
⊤U) ≥ σ2min(X

⊤WU)σmin(U
⊤U) ≥ σk(M)/2

29

C.2 Proof of Theorem C.1

Now, we are ready for our key theorem. By Lemma C.2, Lemma C.3, and Lemma C.4, we already
know the function has good property locally in the region D = {(U,V)|

∥∥M−UV⊤∥∥
F
≤ 1

10σk(M)}
which alludes linear convergence. Similar to the symmetric PSD case, the work remains is to
prove that once we initialize inside this region, our algorithm will guarantee U,V never leave this
region with high probability even with relatively large stepsize. Again, we also need to control the
incoherence of Ut,Vt over all iterates additionally to achieve tight sample complexity and near
optimal runtime.

Following is our formal proof.

Proof of Theorem C.1. For simplicity of notation, we assume d = d1 = d2, and do not distinguish
d1 and d2. However, it is easy to check our proof never use the property M is square matrix. The
proof easily extends to d1 6= d2 case by replacing d in the proof with suitable d1, d2.

Define event Et = {∀τ ≤ t, f(Uτ ,Vτ) ≤ (1− η
2κ)

t(1
10κ)

2,maxi gi(Uτ ,Vτ) ≤ 100µkκ2

d
,maxj hj(Uτ ,Vτ) ≤

100µkκ2

d
}. Theorem C.1 is equivalent to prove event ET happens with high probability. The proof

achieves this by contructing two supermartingales for f(Ut,Vt)1Et
, gi(Ut,Vt)1Et

and hi(Ut,Vt)1Et

(where 1(·) denote indicator function), applies concentration argument.
The proofs also follow similar structure as symmetric PSD case:

1. The constructions of supermartingales

2. Their probability 1 bound and variance bound in order to apply Azuma-Bernstein inequality

3. Final combination of concentration results to conclude the proof

Then let filtration Ft = σ{SG(U0,V0), · · · , SG(Ut−1,Vt−1)} where σ{·} denotes the sigma
field. Also let event , note Et ⊂ Ft. Also Et+1 ⊂ Et, and thus 1Et+1

≤ 1Et
.

By Lemma C.4, we immediately know that conditioned on Et, we have ‖Ut‖ ≤
√
2, ‖Vt‖ ≤

√
2,

σmin(X
⊤Ut) ≥ 1/

√
2κ, σmin(Y

⊤Vt) ≥ 1/
√
2κ. We will use this fact throughout the proof.

For simplicity, when it’s clear from the context, we denote:

(
∆U

∆V

)
= −ηSG(Ũt, Ṽt) =

(
Ut+1

Vt+1

)
−

(
Ũt

Ṽt

)

Construction of supermartingale G: First, since potential function gl(U,V) is forth-order
polynomial, we can expand:

gl(Ũt+1, Ṽt+1) = gl(Ut+1,Vt+1) = gl(Ũt +∆U, Ṽt +∆V)

= e⊤l (Ũt +∆U)(Ṽt +∆V)⊤(Ṽt +∆V)(Ũt +∆U)⊤el

= gl(Ũt, Ṽt) + 2e⊤l ∆UṼ⊤
t ṼtŨ

⊤
t el + 2e⊤l ŨtṼ

⊤
t ∆VŨtel +R2

= gl(Ũt, Ṽt) +R1

Where we denote R1 as the sum of first order terms and higher order terms (all second/third/forth
order terms), and R2 as the sum of second order terms and higher order terms.

We now give a proposition about properties of R1 and R2 which involves a lot calculation, and
postpone its proof in the end of this section.

30

Proposition C.5. With above notations, we have following inequalities hold true.

E[R21Et
|Ft] ≤ η2O(µ2k2κ4)1Et

|R1|1Et
≤ ηO(µ2k2κ5)1Et

w.p 1

E[R2
11Et
|Ft] ≤ η2O(

µ3k3κ6

d
)1Et

Then by taking conditional expectation, we have:

E[gl(Ũt+1, Ṽt+1)1Et
|Ft] = E[gl(Ut+1,Vt+1)1Et

|Ft]

≤E[gl(Ũt, Ṽt) + 2e⊤l ∆UṼ⊤
t ṼtŨ

⊤
t el + 2e⊤l ŨtṼ

⊤
t ∆VŨtel +R2]1Et

The first order term can be calculated as:

[−E2e⊤l ∆UṼ⊤
t ṼtŨ

⊤
t el + 2e⊤l ŨtṼ

⊤
t ∆VŨtel]1Et

=[−4e⊤l (ŨtṼ
⊤
t −M)ṼtṼ

⊤
t ṼtŨ

⊤
t el − 4e⊤l ŨtŨ

⊤
t (ŨtṼ

⊤
t −M⊤)ṼtŨ

⊤
t el]1Et

=[−4e⊤l ŨtṼ
⊤
t ṼtṼ

⊤
t ṼtŨ

⊤
t el + 4e⊤l MṼtṼ

⊤
t ṼtŨ

⊤
t el − 4e⊤l ŨtŨ

⊤
t (ŨtṼ

⊤
t −M⊤)ṼtŨ

⊤
t el]1Et

≤[−4[σmin(Ṽ
⊤
t Ṽt)

∥∥∥e⊤l ŨtṼ
⊤
t

∥∥∥
2
+
∥∥∥e⊤l ŨtṼ

⊤
t

∥∥∥
∥∥∥ṼtṼ

⊤
t

∥∥∥
∥∥∥e⊤l M

∥∥∥

+
∥∥∥e⊤l ŨtŨ

⊤
t

∥∥∥
∥∥∥ŨtṼ

⊤
t −M⊤

∥∥∥
F

∥∥∥e⊤l ŨtṼ
⊤
t

∥∥∥]]1Et

≤[−2

κ
gl(Ũt, Ṽt) + 80

µkκ

d
+

4

10κ
gl(Ũt, Ṽt)]1Et

≤[−1

κ
gl(Ũt, Ṽt) + 80

µkκ

d
]1Et

In second last inequality, we use key observation:

∥∥∥e⊤k ŨtṼ
⊤
t

∥∥∥ =
∥∥∥e⊤k WUDW⊤

V

∥∥∥ =
∥∥∥e⊤k WUDW⊤

U

∥∥∥ =
∥∥∥e⊤k ŨtŨ

⊤
t

∥∥∥

By Proposition C.5, we know E[R21Et
|Ft] ≤ η2O(µ2k2κ4)1Et

. Combine both facts and recall η <
c

µdkκ3 log d
, we have:

E[gi(Ũt+1, Ṽt+1)1Et
|Ft] ≤ [(1− η

κ
)gi(Ũt, Ṽt) +

80ηµkκ

d
+O(η2µ2k2κ4)]1Et

≤ [(1− η

κ
)gi(Ũt, Ṽt) +

90ηµkκ

d
]1Et

The last inequality is achieved by choosing c small enough.

Let Git = (1− η
κ
)−t(gi(Ũt, Ṽt)1Et−1

− 90µkκ2

d
). This gives:

E[Gi(t+1)|Ft] ≤ (1− η

κ
)−t(gi(Ũt, Ṽt)1Et

− 90
µkκ2

d
) ≤ Git

The right inequality is true since 1Et
≤ 1Et−1

. This implies Git is supermartingale.

31

Probability 1 bound for G: We also know:

Gi(t+1) − E[Gi(t+1)|Ft] =(1− η

κ
)−(t+1)[R1 − ER1]1Et

By Proposition C.5, we know with probability 1 that |R1|1Et
≤ ηO(µ2k2κ5)1Et

. This gives with
probability 1:

|Git − E[Git|Ft−1]| ≤ (1− η

κ
)−tηO(µ2k2κ5)1Et−1

(17)

Variance bound for G: We also know

Var(Gi(t+1)|Ft) = (1− η

κ
)−2(t+1)[ER2

11Et
− (ER11Et

)2] ≤ E[R2
11Et
|Ft]

By Proposition C.5, we know that E[R2
11Et
|Ft] ≤ η2O(µ

3k3κ6

d
)1Et

. This gives:

Var(Git|Ft−1) ≤ (1− η

κ
)−2tη2O(

µ3k3κ6

d
)1Et−1

(18)

Bernstein’s inequality for G: Let σ2 =
∑t

τ=1Var(Giτ |Fτ−1), and R satisfies, with probability
1 that |Giτ−E[Giτ |Fτ−1]| ≤ R, τ = 1, · · · , t. Then By standard Bernstein concentration inequality,
we know:

P (Git ≥ Gi0 + s) ≤ exp(
s2/2

σ2 +Rs/3
)

Since Gi0 = gi(Ũ0, Ṽ0)− 90µkκ2

d
, let s′ = O(1)(1 − η

κ
)t[
√
σ2 log d+R log d], we know

P

(
gi(Ũt, Ṽt)1Et−1

≥ 90
µkκ2

d
+ (1− η

κ
)t(gi(Ũ0, Ṽ0)− 90

µkκ2

d
) + s′

)
≤ 1

3d11

By Eq.(17), we know R = (1 − η
κ
)−tηO(µ2k2κ5) satisfies that |Giτ − E[Giτ |Fτ−1]| ≤ R, τ =

1, · · · , t. Also by Eq. (18), we have:

(1− η

κ
)t
√
σ2 log d ≤ ηO(

√
µ3k3κ6 log d

d
)

√√√√
t∑

τ=1

(1− η

κ
)2t−2τ ≤ √ηO(

√
µ3k3κ7 log d

d
)

by η < c
µdkκ3 log d

and choosing c to be small enough, we have:

s′ =
√
ηO(

√
µ3k3κ7 log d

d
) + ηO(µ2k2κ5 log d) ≤ 10

µkκ2

d

Since initialization gives maxi gi(U0,V0) ≤ 10µkκ2

d
, therefore:

P (gi(Ũt, Ṽt)1Et−1
≥ 100

µkκ2

d
) ≤ 1

3d11

That is equivalent to:

P (Et−1 ∩ {gi(Ũt, Ṽt) ≥ 100
µkκ2

d
}) ≤ 1

3d11
(19)

By symmetry, we can also have corresponding result for hj(Ũt, Ṽt).

32

Construction of supermartingale F: Similarly, we also need to construct a martingale for
f(Ũt, Ṽt). Again, we can write f as forth order polynomial:

f(Ũt+1, Ṽt+1) = f(Ut+1,Vt+1) = f(Ũt +∆U, Ṽt +∆V)

= tr
(
[(Ũt +∆U)(Ṽt +∆V)−M][(Ũt +∆U)(Ṽt +∆V)−M]⊤

)

= f(Ũt, Ṽt) + 2tr(∆UṼ⊤
t (ŨtṼ

⊤
t −M)⊤) + 2tr(∆VŨ⊤

t (ŨtṼ
⊤
t −M)) +Q2

= f(Ũt, Ṽt) +Q1

Where we denoteQ1 as the sum of first order terms and higher order terms (all second/third/forth
order terms), and Q2 as the sum of second order terms and higher order terms.

We also now give a proposition about properties of Q1 and Q2 which involves a lot calculation,
and postpone its proof in the end of this section.

Proposition C.6. With above notations, we have following inequalities hold true.

E[Q21Et
|Ft] ≤ η2O(µdkκ2)f(Ũt, Ṽt)1Et

|Q1|1Et
≤ ηO(µdkκ3)f(Ũt, Ṽt)1Et

w.p 1

E[Q2
11Et
|Ft] ≤ η2O(µdkκ2)f2(Ũt, Ṽt)1Et

Then by Proposition C.6, we know E[Q21Et
|Ft] ≤ η2O(µdkκ2)f(Ũt, Ṽt)1Et

. By taking condi-
tional expectation, we have:

E[f(Ut+1)1Et
|Ft]

≤[f(Ũt, Ṽt)− E〈∇f(Ũt, Ṽt), ηSG(Ut)〉+ EQ2]1Et

=[f(Ũt, Ṽt)− η
∥∥∥∇f(Ũt, Ṽt)

∥∥∥
2

F
+ EQ2]1Et

≤[(1− 2η

κ
)f(Ũt, Ṽt) + η2O(µdkκ2)f(Ũt, Ṽt)]1Et

≤(1− η

κ
)f(Ũt, Ṽt)1Et

Let Ft = (1− η
κ
)−tf(Ũt, Ṽt)1Et−1

, we know Ft is also a supermartingale.

Probability 1 bound: We also know

Ft+1 − E[Ft+1|Ft] = (1− η

κ
)−(t+1)[Q1 − EQ1]1Et

By Proposition C.6, we know with probability 1 that |Q1|1Et
≤ ηO(µdkκ3)f(Ut,Vt)1Et

. This gives
with probability 1:

|Ft − EFt| ≤ (1− η

κ
)−tηO(µdkκ3)f(Ut−1)1Et−1

≤ (1− η

κ
)−t(1− η

2κ
)tηO(µdkκ)1Et−1

(20)

Variance bound: We also know

Var(Ft+1|Ft) = (1− η

κ
)−2(t+1)[EQ2

11Et
− (EQ11Et

)2] ≤ (1− η

κ
)−2(t+1)

E[Q2
11Et
|Ft]

By Proposition C.6, we know that E[Q2
11Et
|Ft] ≤ η2O(µdkκ2)f2(Ut,Vt)1Et

. This gives:

Var(Ft|Ft−1) ≤ (1− η

κ
)−2tη2O(µdkκ2)f2(Ut−1)1Et−1

≤ (1− η

κ
)−2t(1− η

2κ
)2tη2O(

µdk

κ2
)1Et−1

(21)

33

Bernstein’s inequality: Let σ2 =
∑t

τ=1 Var(Fτ |Fτ−1), and R satisfies, with probability 1 that
|Fτ − E[Fτ ||Fτ−1]| ≤ R, τ = 1, · · · , t. Then By standard Bernstein concentration inequality, we
know:

P (Ft ≥ F0 + s) ≤ exp(
s2/2

σ2 +Rs/3
)

Let s′ = O(1)(1 − η
κ
)t[
√
σ2 log d+R log d], this gives:

P (f(Ũt, Ṽt)1Et−1
≥ (1− η

κ
)tf(U0) + s′) ≤ 1

3d10

By Eq.(20), we know R = (1 − η
κ
)−t(1 − η

2κ)
tηO(µdkκ) satisfies that |Fτ − E[Fτ |Fτ−1]| ≤ R, τ =

1, · · · , t. Also by Eq. (21), we have:

(1− η

κ
)t
√
σ2 log d ≤ ηO(

√
µdk log d

κ2
)

√√√√
t∑

τ=1

(1− η

κ
)2t−2τ (1− η

2κ
)2τ

≤(1− η

2κ
)tηO(

√
µdk log d

κ2
)

√√√√
t∑

τ=1

(1− η

κ
)2t−2τ (1− η

2κ
)2τ−2t ≤ (1− η

2κ
)t
√
ηO(

√
µdk log d

κ
)

by η < c
µdkκ3 log d

and choosing c to be small enough, we have:

s′ = (1− η

2κ
)t[
√
ηO(

√
µdkκ log d

κ
) + ηO(µdkκ)] ≤ (1− η

2κ
)t(

1

20κ
)2

Since F0 = f(U0) ≤ (1
20κ)

2, therefore:

P (f(Ũt, Ṽt)1Et−1
≥ (1− η

2κ
)t(

1

10κ
)2) ≤ 1

3d10

That is equivalent to:

P (Et−1 ∩ {f(Ũt, Ṽt) ≥ (1− η

2κ
)t(

1

10κ
)2}) ≤ 1

3d10
(22)

Probability for event ET : Finally, combining the concentration result for martingaleG (Eq.(19))
and martingale F (Eq.(22)), we conclude:

P (Et−1 ∩ Ēt)

=P

[
Et−1 ∩

(
[∪i{gi(Ut,Vt) ≥ 100

µkκ2

d
}]

∪ [∪j{hj(Ut,Vt) ≥ 100
µkκ2

d
}] ∪ {f(Ut) ≥ (1− η

2κ
)t(

1

10κ
)2}

)]

≤2
d∑

i=1

P (Et−1 ∩ {gi(Ut,Vt) ≥ 100
µkκ2

d
}) + P (Et−1 ∩ {f(Ut,Vt) ≥ (1− η

2κ
)t(

1

10κ
)2})

≤ 1

d10

34

Since

P (ĒT) =

T∑

t=1

P (Et−1 ∩ Ēt) ≤
T

d10

We finishes the proof.

Finally we give proof for Proposition C.5 and Proposition C.6. The proof mostly consistsof
expanding every term and careful calculations.

Proof of Proposition C.5. For simplicity of notation, we hide the term 1Et
in all following equations.

Reader should always think every term in this proof multiplied by 1Et
. Recall that:

SG(U,V) = 2d2(UV⊤ −M)ij

(
eie

⊤
j V

eje
⊤
i U

)

(
∆U

∆V

)
=− ηSG(Ũt, Ṽt) =

(
Ut+1

Vt+1

)
−

(
Ũt

Ṽt

)

We first prove first three inequality. Recall that:

gl(Ũt+1, Ṽt+1) = gl(Ut+1,Vt+1) = gl(Ũt +∆U, Ṽt +∆V)

= e⊤l (Ũt +∆U)(Ṽt +∆V)⊤(Ṽt +∆V)(Ũt +∆U)⊤el

= gl(Ũt, Ṽt) + 2e⊤l ∆UṼ⊤
t ṼtŨ

⊤
t el + 2e⊤l ŨtṼ

⊤
t ∆VŨtel +R2

= gl(Ũt, Ṽt) +R1

By expanding the polynomial, we can write out the first order term:

R1 −R2 =2e⊤l ∆UṼ⊤
t ṼtŨ

⊤
t el + 2e⊤l ŨtṼ

⊤
t ∆VŨtel

=− 4ηd2(ŨtṼ
⊤
t −M)ij

(
δile

⊤
j ṼtṼ

⊤
t ṼtŨ

⊤
t el + (ŨtṼ

⊤
t)lj(ŨtŨ

⊤
t)il

)

Second order term:

R2 −R3

=e⊤l ∆UṼ⊤
t Ṽt∆

⊤
Uel + e⊤l Ũt∆

⊤
V∆VŨ⊤

t el + 2e⊤l ∆UṼ⊤
t ∆VŨ⊤

t el + 2e⊤l ∆U∆⊤
VṼtŨ

⊤
t el

=4η2d4(ŨtṼ
⊤
t −M)2ij

·
(
δil

∥∥∥e⊤j ṼtṼ
⊤
t

∥∥∥
2
+ (ŨtŨ

⊤
t)

2
li + 2δil(ṼtṼ

⊤
t)jj(ŨtŨ

⊤
t)ii + 2δil(ŨtṼ

⊤
t)

2
ij

)

Third order term:

R4 −R3 =2e⊤l ∆UṼ⊤
t ∆V∆⊤

Uel + 2e⊤l ∆U∆⊤
V∆VŨ⊤

t el

=− 16η3d6(ŨtṼ
⊤
t −M)3ijδil

(
(ṼtṼt)jj(ŨtṼt)ij + (ŨtṼt)ij(ŨtŨt)ii

)

Fourth order term:

R4 = e⊤l ∆U∆⊤
V∆V∆⊤

Uel = 16η4d8(ŨtṼ
⊤
t −M)4ijδil(ŨtṼt)

2
ij

35

For the ease of proof, we denote χ = µkκ2

d
, then we know conditioned on event Et, we have:

maxi

∥∥∥e⊤i ŨtṼ
⊤
t

∥∥∥
2
≤ O(χ), and maxj

∥∥∥e⊤j ṼtŨ
⊤
t

∥∥∥
2
≤ O(χ). Some key inequality we need to use in

the proof are listed here:
∥∥∥e⊤l ŨtṼ

⊤
t

∥∥∥ =
∥∥∥e⊤l ŨtŨ

⊤
t

∥∥∥ and
∥∥∥e⊤l ṼtŨ

⊤
t

∥∥∥ =
∥∥∥e⊤l ṼtṼ

⊤
t

∥∥∥ (23)

and
|(ŨtṼt)ij | ≤

∥∥∥e⊤i ŨtṼ
⊤
t

∥∥∥ ≤ O(
√
χ) (24)

The same also holds true for:

|(ŨtŨ
⊤
t)ii| ≤ O(

√
χ) and |(ṼtṼ

⊤
t)jj | ≤ O(

√
χ) (25)

Another fact we frequently used is:

1

2

∥∥∥e⊤i UV⊤
∥∥∥
2
≤

∥∥∥e⊤i U
∥∥∥
2
≤ 2κ

∥∥∥e⊤i UV⊤
∥∥∥
2

This gives:
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
∞
≤ max

k

∥∥∥ekŨt

∥∥∥max
k

∥∥∥ekṼt

∥∥∥+max
k
‖ekX‖max

k
‖ekY‖ ‖S‖ ≤ O(χκ)

and recall we choose η < c
µdkκ3 log d , where c is some universal constant, then we have:

ηd2
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
∞

= O(ηd2χκ) ≤ O(1) (26)

With equation (23), (24), (25), (26), now we are ready to prove Lemma.

For the first inequality E[R21Et
|Ft] ≤ η2O(µ2k2κ4)1Et

:

E[R21Et
|Ft] ≤ E[|R2 −R3|1Et

|Ft] + E[|R3 −R4|1Et
|Ft] + E[|R4|1Et

|Ft]

For each term, we can bound as:

E[|R2 −R3|1Et
|Ft] ≤ η2O(d2)

∑

ij

(ŨtṼ
⊤
t −M)2ij

(
δilO(χ) + (ŨtŨ

⊤
t)

2
li

)

≤η2O(d2)max
l′

∥∥∥e⊤l′ (ŨtṼ
⊤
t −M)

∥∥∥
2 ∑

i

(
δilO(χ) + (ŨtŨ

⊤
t)

2
li

)
≤ η2O(d2χ2)

E[|R3 −R4|1Et
|Ft] ≤ η3O(d4)

∑

ij

|ŨtṼ
⊤
t −M|3ijδilO(χ)

≤η3O(d4)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
∞

∥∥∥e⊤l (ŨtṼ
⊤
t −M)

∥∥∥
2
O(χ) ≤ η2O(d2χ2)

E[|R4|1Et
|Ft] ≤ η4O(d6)

∑

ij

(ŨtṼ
⊤
t −M)4ijδilO(χ)

≤η4O(d6)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
2

∞

∥∥∥e⊤l (ŨtṼ
⊤
t −M)

∥∥∥
2
O(χ) ≤ η2O(d2χ2)

This gives in sum that

E[R21Et
|Ft] ≤ η2O(d2χ2)1Et

= η2O(µdkκ2)f2(Ut)1Et

36

For the second inequality |R1|1Et
≤ ηO(µ2k2κ5)1Et

w.p 1:

|R1|1Et
≤ |R1 −R2|1Et

+ |R2 −R3|1Et
+ |R3 −R4|1Et

+ |R4|1Et

For each term, we can bound as:

|R1 −R2|1Et
≤ηO(d2)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
∞
O(χ) ≤ ηO(d2χ2κ)

|R2 −R3|1Et
≤η2O(d4)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

∞
O(χ) ≤ ηO(d2χ2κ)

|R3 −R4|1Et
≤η3O(d6)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
3

∞
O(χ) ≤ ηO(d2χ2κ)

|R4|1Et
≤η4O(d8)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
4

∞
O(χ) ≤ ηO(d2χ2κ)

This gives in sum that, with probability 1:

|R1|1Et
≤ ηO(d2χ2κ)1Et

= ηO(µ2k2κ5)1Et

For the third inequality E[R2
11Et
|Ft] ≤ η2O(µ

3k3κ6

d
)1Et

:

ER2
11Et

≤ 4
[
E(R1 −R2)

21Et
+ E(R2 −R3)

21Et
+ E(R3 −R4)

21Et
+ ER2

41Et

]

For each term, we can bound as:

E(R1 −R2)
21Et

≤ η2O(d2)
∑

ij

(ŨtṼ
⊤
t −M)2ij

(
δilO(χ2) + (ŨtṼ

⊤
t)

2
lj(ŨtŨ

⊤
t)

2
il

)

≤η2O(d2)max
l′

∥∥∥e⊤l′ (ŨtṼ
⊤
t −M)

∥∥∥
2 ∑

i

(
δilO(χ2) + (ŨtṼ

⊤
t)

2
lj(ŨtŨ

⊤
t)

2
il

)
≤ η2O(d2χ3)

E(R2 −R3)
21Et

≤ η4O(d6)
∑

ij

(ŨtṼ
⊤
t −M)4ij

(
δilO(χ2) + (ŨtŨ

⊤
t)

4
li

)

≤η4O(d6)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
2

∞
max
l′

∥∥∥e⊤l′ (ŨtṼ
⊤
t −M)

∥∥∥
2∑

i

(
δilO(χ2) + (ŨtŨ

⊤
t)

4
li

)
≤ η2O(d2χ3)

E(R3 −R4)
21Et

≤ η6O(d10)
∑

ij

|ŨtṼ
⊤
t −M|6ijδilO(χ2)

≤η6O(d10)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
4

∞

∥∥∥e⊤l (ŨtṼ
⊤
t −M)

∥∥∥
2
O(χ2) ≤ η2O(d2χ3)

ER2
41Et

≤ η8O(d14)
∑

ij

(ŨtṼ
⊤
t −M)8ijδilO(χ2)

≤η8O(d14)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
6

∞

∥∥∥e⊤l (ŨtṼ
⊤
t −M)

∥∥∥
2
O(χ2) ≤ η2O(d2χ3)

This gives in sum that:

ER2
11Et

≤ η2O(d2χ3)1Et
= η2O(

µ3k3κ6

d
)1Et

This finishes the proof.

37

Proof of Proposition C.6. Similarly to the proof of Proposition C.5, we hide the term 1Et
in all

following equations. Reader should always think every term in this proof multiplied by 1Et
. Recall

that:

f(Ũt+1, Ṽt+1) = f(Ut+1,Vt+1) = f(Ũt +∆U, Ṽt +∆V)

= tr
(
[(Ũt +∆U)(Ṽt +∆V)−M][(Ũt +∆U)(Ṽt +∆V)−M]⊤

)

= f(Ũt, Ṽt) + 2tr(∆UṼ⊤
t (ŨtṼ

⊤
t −M)⊤) + 2tr(∆VŨ⊤

t (ŨtṼ
⊤
t −M)) +Q2

= f(Ũt, Ṽt) +Q1

By expanding the polynomial, we can write out the first order term:

Q1 −Q2 =2tr(∆UṼ⊤
t (ŨtṼ

⊤
t −M)⊤) + 2tr(∆VŨ⊤

t (ŨtṼ
⊤
t −M))

=− 4ηd2(UV⊤ −M)ij

(
e⊤j ṼtṼ

⊤
t (ŨtṼ

⊤
t −M)⊤ei + e⊤i ŨtŨ

⊤
t (ŨtṼ

⊤
t −M)ej

)

The second order term:

Q2 −Q3

=tr(∆UṼ⊤
t Ṽt∆

⊤
U) + tr(Ũt∆

⊤
V∆VŨ⊤

t) + 2tr(∆UṼ⊤
t ∆VŨ⊤

t) + 2tr(∆U∆⊤
V (ŨtṼ

⊤
t −M)⊤)

=4η2d4(UV⊤ −M)2ij

·
(∥∥∥e⊤j ṼtṼ

⊤
t

∥∥∥
2
+

∥∥∥e⊤i ŨtŨ
⊤
t

∥∥∥
2
+ (ṼtṼ

⊤
t)jj(ŨtŨ

⊤
t)ii + (ŨtṼ

⊤
t)ij(ŨtṼ

⊤
t −M)ij

)

The third order term:

Q3 −Q4 =2tr(∆UṼ⊤
t ∆V∆⊤

U) + 2tr(∆U∆⊤
V∆VŨ⊤

t)

=− 16η3d6(UV⊤ −M)3ij

(
(ṼtṼt)jj(ŨtṼt)ij + (ŨtṼt)ij(ŨtŨt)ii

)

The forth order term:

Q4 = tr(∆U∆⊤
V∆V∆⊤

U) = 16η4d8(UV⊤ −M)4ij(ŨtṼt)
2
ij

Again, in addition to equation (23), (23), (24), (25), we also need following inequality:

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
∞
1Et

= max
ij
|tr(e⊤i (ŨtṼ

⊤
t −M)ej)|1Et

=max
ij
|tr(e⊤i (PX + PX⊥

)(ŨtṼ
⊤
t −M)ej)|1Et

≤max
ij
|tr(e⊤i PX(ŨtṼ

⊤
t −M)ej)|1Et

+max
ij
|tr(e⊤i PX⊥

ŨtṼ
⊤
t ej)|1Et

≤max
i

∥∥∥e⊤i X
∥∥∥
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
F
1Et

+max
j

∥∥∥e⊤j WV

∥∥∥
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
F
1Et

≤O(κ
√
χ)

√
f(Ut) (27)

Now we are ready to prove Lemma.

38

For the first inequality E[Q21Et
|Ft] ≤ η2O(µdkκ2)f(Ũt, Ṽt)1Et

:

E[Q21Et
|Ft] ≤ E[|Q2 −Q3|1Et

|Ft] + E[|Q3 −Q4|1Et
|Ft] + E[|Q4|1Et

|Ft]

For each term, we can bound as:

E[|Q2 −Q3|1Et
|Ft] ≤η2O(d2)

∑

ij

(ŨtṼ
⊤
t −M)2ijO(χ) = η2O(d2χ)f(Ũt, Ṽt)

E[|Q3 −Q4|1Et
|Ft] ≤η3O(d4)

∑

ij

|ŨtṼ
⊤
t −M|3ijO(χ)

≤η3O(d4χ)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
∞
f(Ũt, Ṽt) ≤ η2O(d2χ)f(Ũt, Ṽt)

E[|Q4|1Et
|Ft] ≤η4O(d6)

∑

ij

(ŨtṼ
⊤
t −M)4ijO(χ)

≤η4O(d6χ)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
2

∞
f(Ũt, Ṽt) ≤ η2O(d2χ)f(Ũt, Ṽt)

This gives in sum that

E[Q21Et
|Ft] ≤ η2O(d2χ)f(Ũt, Ṽt)1Et

= η2O(µdkκ2)f(Ũt, Ṽt)1Et

For the second inequality |Q1|1Et
≤ ηO(µdkκ3)f(Ũt, Ṽt)1Et

w.p 1:

|Q1|1Et
≤ |Q1 −Q2|1Et

+ |Q2 −Q3|1Et
+ |Q3 −Q4|1Et

+ |Q4|1Et

For each term, we can bound as:

|Q1 −Q2|1Et
≤ηO(d2)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
∞

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
F
O(
√
χ) ≤ ηO(d2χκ)f(Ũt, Ṽt)

|Q2 −Q3|1Et
≤η2O(d4)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

∞
O(χ) ≤ η2O(d4χ2κ2)f(Ũt, Ṽt) = ηO(d2χκ)f(Ũt, Ṽt)

|Q3 −Q4|1Et
≤η3O(d6)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
3

∞
O(χ) ≤ ηO(d2χκ)f(Ũt, Ṽt)

|Q4|1Et
≤η4O(d8)

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
4

∞
O(χ) ≤ ηO(d2χκ)f(Ũt, Ṽt)

This gives in sum that, with probability 1:

|Q1|1Et
≤ ηO(d2χκ)f(Ũt, Ṽt)1Et

= ηO(µdkκ3)f(Ũt, Ṽt)1Et

For the third inequality E[Q2
11Et
|Ft] ≤ η2O(µdkκ2)f2(Ũt, Ṽt)1Et

:

EQ2
11Et

≤ 4
[
E(Q1 −Q2)

21Et
+ E(Q2 −Q3)

21Et
+ E(Q3 −Q4)

21Et
+ EQ2

41Et

]

39

For each term, we can bound as:

E(Q1 −Q2)
21Et

≤η2O(d2)
∑

ij

(ŨtṼ
⊤
t −M)2ij

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

F
O(χ) ≤ η2O(d2χ)f2(Ũt, Ṽt)

E(Q2 −Q3)
21Et

≤η4O(d6)
∑

ij

(ŨtṼ
⊤
t −M)4ijO(χ2)

≤η4O(d6χ2)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
2

∞

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

F
≤ η4O(d6χ3κ2)f2(Ũt, Ṽt)

≤η2O(d2χ)f2(Ũt, Ṽt)

E(Q3 −Q4)
21Et

≤η6O(d10)
∑

ij

|ŨtṼ
⊤
t −M|6ijO(χ2)

≤η6O(d10χ2)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
4

∞

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

F
≤ η2O(d2χ)f2(Ũt, Ṽt)

EQ2
41Et

≤η8O(d14)
∑

ij

(ŨtṼ
⊤
t −M)8ijδilO(χ2)

≤η8O(d14χ2)
∥∥∥ŨtṼ

⊤
t −M

∥∥∥
6

∞

∥∥∥ŨtṼ
⊤
t −M

∥∥∥
2

F
≤ η2O(d2χ)f2(Ũt, Ṽt)

This gives in sum that:

EQ2
11Et

≤ η2O(d2χ)f2(Ũt, Ṽt)1Et
= η2O(µdkκ2)f2(Ũt, Ṽt)1Et

This finishes the proof.

40

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Problem statement and assumptions

	3 Main Results
	3.1 Symmetric PSD Case
	3.2 General Case

	4 Proof Sketch
	5 Conclusion
	A Proof of Initialization
	A.1 Frobenius Norm of Initialization
	A.2 Incoherence of Initialization

	B Proof of Symmetric PSD Case
	B.1 Geometric Properties in Local Region
	B.2 Proof of Theorem ??

	C Proof of General Asymmetric Case
	C.1 Geometric Properties in Local Region
	C.2 Proof of Theorem ??

