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Abstract

Suppose an agent is in a (possibly unknown) Markov Decision Process in the absence of a reward
signal, what might we hope that an agent can efficiently learn to do? This work studies a broad class of
objectives that are defined solely as functions of the state-visitation frequencies that are induced by how
the agent behaves. For example, one natural, intrinsically defined, objective problem is for the agent to
learn a policy which induces a distribution over state space that is as uniform as possible, which can be
measured in an entropic sense. We provide an efficient algorithm to optimize such such intrinsically defined
objectives, when given access to a black box planning oracle (which is robust to function approximation).
Furthermore, when restricted to the tabular setting where we have sample based access to the MDP, our
proposed algorithm is provably efficient, both in terms of its sample and computational complexities.
Key to our algorithmic methodology is utilizing the conditional gradient method (a.k.a. the Frank-Wolfe
algorithm) which utilizes an approximate MDP solver.

1 Introduction

A fundamental problem in reinforcement learning is that of exploring the state space. How do we understand
what is even possible in a given environment without a reward signal?

This question has received a lot of attention, with approaches such as learning with intrinsic reward and
curiosity driven methods, surveyed below. Our work studies a class of objectives that is defined solely as
function of the state-visitation frequencies. A natural such objective is finding a policy that maximizes the
entropy of the induced distribution over the state space. More generally, our approach extends to any concave
function over distributions.

Suppose the MDP is fully and precisely known, in terms of states, actions, and the entire transition matrix.
Then maximizing the entropy can be recast as a convex optimization problem (see Section 3.2.2 or [DFVR03])
over the space of state-visitation frequencies induced by the exhaustive set of all policies. However, most RL
instances that are common in practice exhibit at least one of several complications:

— prohibitively large state space (i.e. Chess or Go)
— unknown transition matrix (as in common Atari games)
These scenarios often require function approximation, ie. restricting the search to a non-linearly parameterized
policy class (eg. neural networks), which makes the entropy maximization problem non-convex.

As a remedy for the computational difficulty, we propose considering an approximate planning oracle: an
efficient method that given a well-specified reward signal can find an optimizing policy. Such sample-based
planning oracles have been empirically observed to work well with non-linear policy classes. Given such an
oracle, we give a provably efficient method for exploration based on the conditional gradient (or Frank-Wolfe)
algorithm [FW56].

1

ar
X

iv
:1

81
2.

02
69

0v
2 

 [
cs

.L
G

] 
 2

6 
Ja

n 
20

19



Formally, we show how to generate a sequence of reward signals, that sequentially optimized give rise
to a policy with entropy close to optimal. Our main theorem gives a bound on the number of calls to the
planning oracle, which is independent of the size of the state space of the MDP. Next, we outline the efficient
construction of such oracles and state the resultant sample & computational complexity in the tabular MDP
setting. As a proof of concept, we implement our method and show experiments over several mainstream RL
tasks in Section 5.

1.1 Informal statement of contributions

To facilitate exploration in potentially unknown MDPs within a restricted policy class, we assume access to
the environment using the following two oracles:

Approximate planning oracle: Given a reward function (on states) r : S → R and a sub-optimality
gap ε, the planning oracle returns a stationary policy π = ApproxPlan(r, ε) with the guarantee that
V (π) ≥ maxπ V (π)− ε, where V (π) is the value of policy π.

State distribution estimate oracle: A state distribution oracle estimates the state distribution
d̂π = DensityEst(π, ε) of any given (non-stationary) policy π, guaranteeing that ‖dπ − d̂π‖∞ ≤ ε.

Given access to these two oracles, we describe a method that provably optimizes any continuous and
smooth objective over the state-visitation frequencies. Of special interest is the maximum entropy and relative
entropy objectives.

Theorem 1.1 (Main Theorem - Informal). There exists an efficient algorithm (Algorithm 1) such that for
any β-smooth measure R, and any ε > 0, in O( 1

ε log 1
ε ) calls to ApproxPlan & DensityEst , it returns a

policy π̄ with
R(dπ̄) ≥ max

π
R(dπ)− ε .

1.2 Related work

We review related works in this section.
Reward Shaping & Imitation Learning: Direct optimization approaches to RL (such as policy

gradient methods) tend to perform favorably when random sequences of actions lead the agent to some
positive reward, but tend to fail when the rewards are sparse or myopic. Thus far, the most practical
approaches to address this have either been through some carefully constructed reward shaping (e.g. [NHR99]
where dense reward functions are provided to make the optimization problem more tractable) or through
inverse reinforcement learning and imitation learning [AN04, RGB11] (where an expert demonstrates to the
agent how to act).

PAC Learning: For the case of tabular Markov decision processes, the balance of exploration and
exploitation has been addressed in that there are a number of methods which utilize confidence based reward
bonuses to encourage exploration in order to ultimately behave near optimally [KS02, Kak03, SLW+06, LH14,
DB15, SS10, AOM17].

Count-based Models & Directed Exploration: There are a host of recent empirical success using
deep RL methods which encourage exploration in some form[MKS+15, SHM+16]. The approaches which
encourage exploration are based on a few related ideas: that of encouraging encouraging exploration through
state visitation frequencies (e.g. [OBvdOM17, BSO+16, THF+17]) and those based on a intrinsic reward
signal derived from novelty or prediction error [LLTyO12, PAED17, SRM+18, FCRL17, MJR15, HCC+16,
WRR+17], aligning an intrinsic reward to the target objective [Kae93, CBS05, SLBS10, SLB09, ZOS18], or
sample based approaches to tracking of value function uncertainty [OBPVR16, OAC18].

Intrinsic Learning: Works in [CBS05, SLB09, SLBS10] established computational theories of intrinsic
reward signals (and how it might help with downstream learning of tasks) and other works also showed how
to incorporate intrinsic rewards (in the absence of any true reward signal) [WdWK+18, BESK18, BEP+18,
NPD+18]. The potential benefit is that such learning may help the agent reach a variety of achievable goals
and do well on other extrinsically defined tasks, not just the task under which it was explicitly trained for
under one specific reward function (e.g. see [CBS05, SLB09, WdWK+18, NPD+18]).
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2 Preliminaries

Markov decision process: An infinite-horizon discounted Markov Decision Process is a tuple M =
(S,A, r, P, γ, d0), where S is the set of states, A is the set of actions, and d0 is the distribution of of the
initial state s0. At each timestep t, upon observing the state st, the execution of action at triggers an
observable reward of rt = r(st, at) and a transition to a new state st+1 ∼ P (·|st, at). The performance on an
infinite sequence of states & actions (hereafter, referred to as a trajectory) is judged through the (discounted)
cumulative reward it accumulates, defined as

V (τ = (s0, a0, s1, a1, . . . )) = (1− γ)

∞∑
t=0

γtr(st, at).

Policies: A policy is a (randomized) mapping from a history, say (s0, a0, r0, s1, a1, r1 . . . st−1, at−1, rt−1),
to an action at. A stationary policy π is a (randomized) function which maps a state to an action in a
time-independent manner, i.e. π : S → ∆(A). When a policy π is executed on some MDP M, it produces a
distribution over infinite-length trajectories τ = (s0, a0, s1, a1 . . . ) as specified below.

P (τ |π) = P (s0)
∞∏
i=0

(π(ai|si)P (si+1|si, ai))

The (discounted) value Vπ of a policy π is the expected cumulative reward an action sequence sampled from
the policy π gathers.

Vπ = E
τ∼P (·|π)

V (τ) = (1− γ) E
τ∼P (·|π)

∞∑
t=0

γtr(st, at)

Induced state distributions: The t-step state distribution and the (discounted) state distribution of a
policy π that result are

dt,π(s) = P (st = s|π) =
∑

all τ with st=s

P (τ |π), (2.1)

dt,π(s, a) = P (st = s, at = a|π) =
∑

all τ with st=s,at=a

P (τ |π), (2.2)

dπ(s) = (1− γ)

∞∑
t=1

γtdt,π(s), (2.3)

dπ(s, a) = (1− γ)

∞∑
t=1

γtdt,π(s, a). (2.4)

The latter distribution can be viewed as the analogue of the stationary distribution in the infinite horizon
setting.

Mixtures of stationary policies: Given a sequence of k policies C = (π0, . . . πk−1), and α ∈ ∆k,
we define πmix = (α,C) to be a mixture over stationary policies. The (non-stationary) policy πmix is one
where, at the first timestep t = 0, we sample policy πi with probability αi and then use this policy for all
subsequent timesteps. In particular, the behavior of a mixture πmix with respect to an MDP is that it induces
infinite-length trajectories τ = (s0, a0, s1, a1 . . . ) with the probability law :

P (τ |πmix) =

k−1∑
i=0

αiP (τ |πi) (2.5)

and the induced state distribution is:

dπmix(s) =

k−1∑
i=0

αidπi(s). (2.6)
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Note that such a distribution over policies need not be representable as a stationary stochastic policy (even if
the πi’s are stationary) due to that the sampled actions are no longer conditionally independent given the
states.

3 The Objective: MaxEnt Exploration

As each policy induces a distribution over states, we can associate a concave reward functional R(·) with this
induced distribution. We say that a policy π∗ is a maximum-entropy exploration policy, also to referred to as
the max-ent policy, if the corresponding induced state distribution has the maximum possible R(dπ) among
the class of all policies. Lemma 3.3 assures us that the search over the class of stationary policies is sufficient.

π∗ ∈ arg max
π

R(dπ).

Our goal is to find a policy that induces a state distribution with a comparable value of the reward functional.

3.1 Examples of reward functionals

A possible quantity of interest that serves as a motivation for considering such functionals is the entropy of
the induced distribution.

max
π
{H(dπ) = − E

s∼dπ
log dπ(s)}

The same techniques we derive can also be used to optimize other entropic measures. For example, we may
be interested in minimizing:

min
π

{
KL(dπ||Q) = E

s∼dπ
log

dπ(s)

Q(s)

}
for some given distribution Q(s). Alternatively, we may seek to minimize a cross entropy measure:

min
π

{
E
s∼Q

log
1

dπ(s)
= KL(Q||dπ) +H(Q)

}
where the expectation is now under Q. For uniform Q, this latter measure may be more aggressive in forcing
π to have more uniform coverage than the entropy objective.

3.2 Landscape of the objective function

In this section, we establish that the entropy of the state distribution is not a concave function of the policy.
Similar constructions can establish analogous statements for other non-trivial functionals. Subsequently, we
discuss a possible convex reformulation of the objective in the space of induced distributions which constitute
a convex set.

3.2.1 Non-convexity in the policy space

Despite the concavity of the entropy function, our overall maximization problem is not concave as the state
distribution is not an affine function of the policy. This is stated precisely in the following lemma.

Lemma 3.1. H(dπ) is not concave in π.

Proof. Figure 1 demonstrates the behavior of π0, π1, π2 on a 6-state MDP with binary actions. Note that for
sufficiently large γ → 1 and any policy π, the discounted state distribution converges to the distribution on
the states at the second timestep, or formally dπ → d2,π. Now with the realization π0 = π1+π2

2 , observe that

d2,π0 is not uniform on {s2,0, s2,1, s2,2}, implying that H(d2,π0) <
H(d2,π1 )+H(d2,π2 )

2 .
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Figure 1: Description of π0, π1, π2.

Lemma 3.2. For any policy π and MDP M, define the matrix Pπ ∈ R|S|×|S| so that

Pπ(s′, s) =
∑
a∈A

π(a|s)P (s′|s, a).

Then it is true that

1. Pπ is linear in π,

2. dt,π = P tπd0 for all t ≥ 0,

3. dπ = (1− γ)(I − γPπ)−1d0.

Proof. Linearity of Pπ is evident from the definition. (2,3) may be verified by calculation.

3.2.2 Convexity in the distribution space

Define the set of all induced distributions as K = {d : d(s, a) ≥ 0 and satisfies the constraints stated below}.
For every d ∈ K, it is possible to construct a policy π with dπ = d, and for every π, dπ ∈ K holds [Put14].∑

a

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

The search for a max-ent policy can be recast as a convex optimization problem over the space of distributions.

max
d∈K

R(d).

Although we outline this reduction for an unrestricted policy class, similar reductions are possible for linearly-
parameterized policy classes. These techniques can be extended to the case of MDPs with unknown dynamics
[DFVR03].

3.2.3 Sufficiency of Stationary Policies

The set of non-Markovian policies is richer than the set of Markov stationary policies in terms of the
distributions over trajectories each may induce. A priori, it is not evident that maximizing R(dπ) over the
set of stationary policies is sufficient to guarantee the optimality in a larger class of all policies. Lemma 3.3
establishes this claim by equating the set of achievable induced state distributions for these two sets of policies.

Lemma 3.3. [Put14] For any possibly non-Markovian policy π, define a stationary Markov policy π′ as

π′(a|s) = dπ(s,a)
dπ(s) . Then, dπ = dπ′ .

5



Algorithm 1 Maximum-entropy policy computation.

1: Input: Step size η, number of iterations T , planning oracle error tolerance ε1 > 0, state distribution
oracle error tolerance ε0 > 0, reward functional R.

2: Set C0 = {π0} where π0 is an arbitrary policy.
3: Set α0 = 1.
4: for t = 0, . . . , T − 1 do
5: Call the state distribution oracle on πmix,t = (αt, Ct):

d̂πmix,t
= DensityEst (πmix,t, ε0)

6: Define the reward function rt as

rt(s) = ∇R(d̂πmix,t
) :=

dR(X)

dX

∣∣∣∣∣
X=d̂πmix,t

.

7: Compute the (approximately) optimal policy on rt:

πt+1 = ApproxPlan (rt, ε1) .

8: Update πmix,t+1 = (αt+1, Ct+1) to be

Ct+1 = (π0, . . . , πt, πt+1), (4.1)

αt+1 = ((1− η)αt, η). (4.2)

9: end for
10: return πmix,T = (αT , CT ).

4 Algorithms & Main Results

The algorithm maintains a distribution over policies, and proceeds by adding a new policy to the support of
the mixture and reweighing the components. To describe the algorithm, we will utilize access to two kinds of
oracles. The constructions for these are detailed in later sections.

Approximate planning oracle: Given a reward function (on states) r : S → R and a sub-optimality
gap ε1, the planning oracle returns a stationary1 policy π = ApproxPlan(r, ε1) with the guarantee that
Vπ ≥ maxπ Vπ − ε1.

State distribution estimate oracle: A state distribution oracle estimates the state distribution
d̂π = DensityEst(π, ε0) of any given (non-stationary) policy π, guaranteeing that ‖dπ − d̂π‖∞ ≤ ε0.

We shall assume in the following discussion that the reward functional R is β-smooth, B-bounded, and
that it satisfies the following inequality for all X,Y .

‖∇R(X)−∇R(Y )‖∞ ≤ β‖X − Y ‖∞ (4.3)

− βI � ∇2R(X) � βI; ‖∇R(X)‖∞ ≤ B (4.4)

Theorem 4.1 (Main Theorem). For any ε > 0, set ε1 = 0.1ε, ε0 = 0.1β−1ε, and η = 0.1β−1ε. When
Algorithm 1 is run for T iterations where:

T ≥ 10βε−1 log 10Bε−1 ,

we have that:
R(πmix,T ) ≥ max

π
R(dπ)− ε .

1As the oracle is solving a discounted problem, we know the optimal value is achieved by a stationary policy.
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Before we begin the proof, we state the implication for maximizing the entropy of the induced distribution.
While the entropy objective is, strictly speaking, not smooth, one may consider a smoothed alternative Hσ

defined below.
Hσ(dπ) = −Es∼dπ log(dπ(s) + σ)

When the algorithm is fed Hσ as the proxy reward functional, it is possible make sub-optimality guarantees
on the true objective H. Lemma 4.3 (D) relates the entropy functional H to its smoothed variant Hσ, while
the rest of the lemma quantifies smoothness of Hσ. The factors of |S| incurred below are a consequence of
imposed smoothing on H, and are not necessary for naturally smooth objectives.

Corollary 4.2. For any ε > 0, set σ = 0.1ε
2|S| , ε1 = 0.1ε, ε0 = 0.1ε2

80|S| , and η = 0.1ε2

40|S| . When Algorithm 1 is run

for T iterations with the reward functional Hσ, where:

T ≥ 40|S|
0.1ε2

log
log |S|
0.1ε

,

we have that:
H(πmix,T ) ≥ max

π
H(dπ)− ε .

We continue with the proof of the main theorem.

Proof of Theorem 4.1. Let π∗ be a maximum-entropy policy, ie. π∗ ∈ arg maxπ R(dπ).

R(dπmix,t+1) = R((1− η)dπmix,t + ηdπt+1) Equation 2.6

≥ R(dπmix,t
) + η〈dπt+1

− dπmix,t
,∇R(dπmix,t

)〉 − η2β‖dπt+1
− dπmix,t

‖22 smoothness

The second inequality follows from the smoothness of R. (See Section 2.1 in [B+15] for equivalent definitions
of smoothness in terms of the function value and the Hessian.)

To incorporate the error due to the two oracles, observe

〈dπt+1
,∇R(dπmix,t

)〉 ≥ 〈dπt+1
,∇R(d̂πmix,t

)〉 − β‖dπmix,t
− d̂πmix,t

‖∞
≥ 〈dπ∗ ,∇R(d̂πmix,t

)〉 − βε0 − ε1

≥ 〈dπ∗ ,∇R(dπmix,t
)〉 − 2βε0 − ε1

The first and last inequalities invoke the assumptions laid out in Equation 4.3. Note that the second inequality
above follows from the defining character of the planning oracle, ie. with respect to the reward vector
rt = ∇R(d̂πmix,t

), for any policy π′, it holds true that

Vπt+1
= 〈dπt+1

, rt〉 ≥ Vπ′ − ε1 = 〈dπ′ , rt〉 − ε1

In particular, this statement holds for the choice π′ = π∗. This argument does not rely on π∗ being a
stationary policy, since πt+1 is an optimal policy for the reward function rt among the class of all policies.

Using the above fact and continuing on

R(dπmix,t+1
) ≥ R(dπmix,t

) + η〈dπ∗ − dπmix,t
,∇R(dπmix,t

)〉 − 2ηβε0 − ηε1 − η2β

≥ (1− η)R(dπmix,t) + ηR(dπ∗)− 2ηβε0 − ηε1 − η2β

The last step here utilizes the concavity of R. Indeed, the inequality follows immediately from the sub-gradient
characterization of concave functions. Now, with the aid of the above, we observe the following inequality.

R(dπ∗)−R(dπmix,t+1
) ≤ (1− η)(R(dπ∗)−R(dπmix,t

)) + 2ηβε0 + ηε1 + η2β.

Telescoping the inequality, this simplifies to

R(dπ∗)−R(dπmix,T
) ≤ (1− η)T (R(dπ∗)−R(dπmix,0

)) + 2βε0 + ε1 + ηβ

≤ Be−Tη + 2βε0 + ε1 + ηβ.

Setting ε1 = 0.1ε, ε0 = 0.1β−1ε, η = 0.1β−1ε, T = η−1 log 10Bε−1 suffices.
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The following lemma is helpful in proving the corollary for the entropy functional.

Lemma 4.3. For any two distributions P,Q ∈ ∆d:

(A) (∇Hσ(P ))i = −
(

log(Pi + σ) + Pi
Pi+σ

)
,

(B) Hσ(P ) in concave in P ,

(C) Hσ(P ) is 2σ−1 smooth, ie.
−2σ−1Id � ∇2R(P ) � 2σ−1Id,

(D) |Hσ(P )−R(P )| ≤ dσ,

(E) ‖∇Hσ(P )−∇Hσ(Q)‖∞ ≤ 2σ−1‖P −Q‖∞.

Proof of Lemma 4.3. (A) may be verified by explicit calculation. Observe ∇2Hσ(P ) is a diagonal matrix
with entries

(∇2Hσ(P ))i,i = − Pi + 2σ

(Pi + σ)2
.

(B) is immediate. (C) follows as |(∇2Hσ(P ))i,i| ≤ 2σ−1.

|Hσ(P )−H(P )| =
d−1∑
i=0

Pi log
Pi + σ

Pi
≤
d−1∑
i=0

Pi
σ

Pi
= dσ.

The last inequality follows from log x ≤ x− 1,∀x > 0. Finally, to see (E), using Taylor’s theorem, observe

‖∇Hσ(P )−∇Hσ(Q)‖∞ ≤ max
i,α∈[0,1]

|(∇2Hσ(αP + (1− α)Q)i,i|‖P −Q‖∞

≤ 2σ−1‖P −Q‖∞.

4.1 Tabular setting

In general, the construction of provably computationally efficient approximate planning oracle for MDPs with
large or continuous state spaces poses a challenge. Discounting limited settings (eg. the Linear Quadratic
Regulators [Ber05], [FGKM18]), one may only appeal to the recent empirical successes of sample-based
planning algorithms that rely on the power of non-linear function approximation.

Nevertheless, one may expect, and possibly require, that any solution proposed to address the general
case performs reasonably when restricted to the tabular setting. In this spirit, we outline the construction of
the required oracles in the tabular setting.

4.1.1 The known MDP case

With the knowledge of the transition matrix P of a MDP M in the form of an explicit tensor, the planning
oracle can be implemented via any of the exact solution methods [Ber05], eg. value iteration, linear
programming. The state distribution oracle can be efficiently implemented as Lemma 3.2 suggests.

Corollary 4.4. When the MDP M is known explicitly, with the oracles described in Section 4, Algorithm 1

runs in poly
(
β, |S|, |A|, 1

1−γ ,
1
ε , logB

)
time to guarantee R(dπmix,T

) ≥ maxπ R(dπ)− ε.
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4.1.2 The unknown MDP case

For the case of an unknown MDP, a sample-based algorithm must iteratively try to learn about the MDP
through its interactions with the environment. Here, we assume a γ-discounted episodic setting, where the
agent can act in the environment starting from s0 ∼ d0 for some number of steps, and is then able to reset.
Our measure of sample complexity in this setting is the number of Õ

(
(1− γ)−1

)
-length episodes the agent

must sample to achieve a ε-suboptimal performance guarantee.
The algorithm outlined below makes a distinction between the set of states it is (relatively) sure about

and the set of states that have not been visited enough number of times yet. The algorithm and the analysis
is similar to the E3 algorithm [KS02]. Since algorithms like E3 proceed by building a relatively accurate
model on the set of reachable states, as opposed to estimate of the value functions, this permits the reuse of
information across different invocations, each of which might operate on a different reward signal.

Theorem 4.5. For an unknown MDP, with Algorithm 2 as the planning oracle and Algorithm 3 as the dis-

tribution estimate oracle, Algorithm 1 runs in poly
(
β, |S|, |A|, 1

1−γ ,
1
ε

)
time and executes Õ

(
B3|S|2|A|
ε3(1−γ)2 + β3

ε3

)
episodes of length Õ

(
log |S|ε−1

log γ−1

)
to guarantee that

R(dπmix,T
) ≥ max

π
R(dπ)− ε.

A sub-optimality bound may be derived on the non-smooth entropy functional H via Lemma 4.3. Again,
the extraneous factors introduced in the process are a consequence of the imposed smoothing via Hσ.

Corollary 4.6. For an unknown MDP, with Algorithm 2 as the planning oracle and Algorithm 3 as the

distribution estimate oracle and Hσ as the proxy reward functional, Algorithm 1 runs in poly
(
|S|, |A|, 1

1−γ ,
1
ε

)
time and executes Õ

(
|S|2|A|
ε3(1−γ)2 + |S|3

ε6

)
episodes of length Õ

(
log |S|ε−1

log γ−1

)
to guarantee that

H(dπmix,T
) ≥ max

π
H(dπ)− ε.

Before we state the proof, we note the following lemmas. The first is an adaptation of the analysis of the
E3 algorithm. The second is standard. We only include the second for completeness. The proofs of these
may be found in the appendix.

Lemma 4.7. For any reward function r with ‖r‖∞ ≤ B, ε > 0, with ε1 = 0.1B−1ε,m =
32B2|S| log

2|S|
δ

(1−γ)2(0.1ε)2 , n =

B log
32|S|2|A| log 2|S|

δ
(1−γ)2(0.1ε)2δ

0.1ε , t0 =
log 0.1ε

log |S|
log γ , Algorithm 4.5 guarantees with probability 1− δ

Vπ ≥ max
π

Vπ − ε.

Furthermore, note that if Algorithm 4.5 is invoked T times (on possibly different reward functions), the total

number of episodes sampled across all the invocations is n(T +m|S||A|) = Õ
(
BT
ε + B3|S|2|A|

ε3(1−γ)2

)
, each episode

being of length t0.

Lemma 4.8. For any ε0, δ > 0, when Algorithm 3 is run with m = 200
ε20

log 2|S| log 0.1ε
δ log γ , t0 = log 0.1ε0

log γ , d̂π

satisfies ‖d̂π − dπ‖∞ ≤ ε0 with probability at least 1− δ. In this process, the algorithm samples m episodes of
length t0.

Proof of Theorem 4.5. The claim follows immediately from the invocations of the two lemmas above with
the parameter settings proposed in Theorem 4.1.

The following notions & lemmas are helpful in proving Lemma 4.7. We shall call a state s ∈ K m-known if,
for all actions a ∈ A, action a has been executed at state s at least m times. For any MDPM = (S,A, r, P, γ)
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Algorithm 2 Sample-based planning for an unknown MDP.

1: Input: Reward r, error tolerance ε > 0, exact planning oracle tolerance ε1 > 0, oversampling parameter
m, number of rollouts n, rollout length t0.

2: Initialize a persistent data structure C ∈ R|S|2×|A|, which is maintained across different calls to the
planning algorithm to keep transition counts, to C(s′|s, a) = 0 for every (s′, s, a) ∈ S2 ×A.

3: repeat

4: Declare K = {s : mina∈A
∑
s′∈S C(s′|s, a) ≥ m}, P̂ (s′|s, a) =

{
C(s′|s,a)∑
s′∈S C(s′|s,a) , if s ∈ K

1s′=s. otherwise.

5: Define the reward function as rK(s) =

{
r(s), if s ∈ K
B. otherwise

.

6: Compute an (approximately) optimal policy on the MDP induced by P̂ and reward rK. This task is
purely computational, and can be done as indicated in Section 4.1.1. Also, modify the policy so that
on every state s ∈ S − K, it chooses the least performed action.

π(s) =

{
(Π (rK, ε1))(s) if s ∈ K,
argmina∈A

∑
s′∈S C(s′|s, a) otherwise

7: Run π on the true MDP M to obtain n independently sampled t0-length trajectories (τ1, . . . τn), and
increment the corresponding counts in C(s′|s, a).

8: If and only if no trajectory τi contains a state s ∈ S − K, mark π as stable.
9: until π is stable.

10: return π.

Algorithm 3 Sample-based estimate of the state distribution.

1: Input: A policy π, termination length t0, oversampling parameter m.
2: Sample m trajectories (τ0, . . . τm−1) of length t0 following the policy π.

3: For every t < t0, calculate the empirical state distribution d̂t,π.

dt,π(s) =
|{i < m : τi = (s0, a0, . . . ) with st = s}|

m

4: return d̂π = 1−γ
1−γt0

∑t0−1
t=0 γtd̂t,π

and a set of m-known states K ⊆ S, define an induced MDPMK = (S,A, rK, PK, γ) so that the states absent
from K are absorbing and maximally rewarding.

rK(s, a) =

{
r(s, a) if s ∈ K,
B otherwise,

(4.5)

PK(s′|s, a) =

{
P (s′|s, a) if s ∈ K,
1s′=s otherwise.

(4.6)

The state distribution induced by a policy π onMK shall be denoted by dMK,π. Often, in absence of an exact

knowledge of the transition matrix P , the policy π may be executed on an estimated transition matrix P̂ .
We shall use dM̂K,π to denote the state distribution of the policy π executed on the MDP with the transition
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matrix P̂ . Also, define the following.

PK(escape|π) = E
τ∼P (·|π)

1∃t<t0:st 6∈K,τ=(s0,a0,... ),

PK,γ(escape|π) = (1− γ) E
τ∼P (·|π)

∞∑
t=0

γt1 su∈K∀u<t and
st 6∈K,τ=(s0,a0,... )

.

Note that PK(escape|π) ≥ PK,γ(escape|π)− γt0 .

Lemma 4.9. (Lemma 8.4.4[Kak03]) For any policy π, the following statements are valid.

〈dπ, r〉 ≥ 〈dMK,π, rK〉 − PK,γ(escape|π)‖rK‖∞,
〈dMK,π, rK〉 ≥ 〈dπ, r〉.

Lemma 4.10. (Lemma 8.5.4[Kak03]) If, for all (s, a) ∈ S ×A, ‖P̂ (·|s, a)− PK(·|s, a)‖1 ≤ ε, then for any
reward r, policy π, it is true that

|〈dMK,π, r〉 − 〈dM̂K,π, r〉| ≤
ε

1− γ

Lemma 4.11. (Folklore, eg. Lemma 8.5.5[Kak03]) When m samples {x1, . . . xm} are drawn from a distri-

bution P , supported on a domain of size d, to construct an empirical distribution P̂ (x) =
∑m
i=1 1xi=x
m , it is

guaranteed that with probability 1− δ

‖P − P̂‖1 ≤

√
8d log 2d

δ

m
.

Proof of Lemma 4.7. The key observation in dealing with an unknown MDP is: either π, computed on the
the transition P̂ , is (almost) optimal for the given reward signal on the true MDP, or it escapes the set of
known states K quickly. If the former occurs, the requirement on the output of the algorithm is met. In case
of the later, π serves as a good policy to quickly explore new states – this can happen only a finite number of
times.

Let π∗ = arg maxπ Vπ. First, note that for any π chosen in the Line 6, we have

Vπ =〈dπ, r〉
≥〈dMK,π, rK〉 − (γt0 + PK(escape|π))B 4.9

≥〈dM̂K,π, rK〉 −
1

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B 4.10, 4.11

≥〈dM̂K,π∗ , rK〉 − ε1 −
1

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B choice of π

≥〈dMK,π∗ , rK〉 − ε1 −
2

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B 4.10, 4.11

≥Vπ∗ − ε1 −
2

1− γ

√
8|S| log 2|S|

δ

m
− (γt0 + PK(escape|π))B 4.9

If PK(escape|π) > ∆, then the probability that π doesn’t escape K in n trials is e−n∆. Accounting
for the failure probabilities with a suitable union bound, Line 8 ensures that π is marked stable only if

PK(escape|π) ≤ log(Nδ−1)
n , where N is the total number of times the inner loop is executed.

To observe the truth of the second part of the claim, note that every reiteration of the inner loop coincides
with the exploration of some action at a m-unknown state. There can be at most m|S||A| such exploration
steps. Finally, each run of the inner loop samples n episodes.
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MountainCar Pendulum Ant

(a) (b) (c)

(d) (e)

(f)

Figure 2: Results of the preliminary experiments. In each plot, blue represents the MaxEnt agent, and orange
represents the random baseline. 2a, 2b, and 2c show the entropy of the policy evolving with the number of
epochs. 2d, 2e, and 2f show the log-probability of occupancy of the two-dimensional state space. In 2f, the
infinite xy grid is limited to [−20, 20]× [−20, 20].

Proof of Lemma 4.8. First note that it suffices to ensure for all t < t0 simultaneously, it happens ‖dt,π −
d̂t,π‖∞ ≤ 0.1ε0. This is because

‖dπ − d̂π‖∞ ≤
1− γ

(1− γt0)

t0−1∑
t=0

γt‖d̂t,π − (1− γt0)dt,π‖∞ + γt0

≤ 1− γ
(1− γt0)

t0−1∑
t=0

γt‖d̂t,π − dt,π‖+ 0.3ε0 ≤ ε0.

Since the trajectories are independently, |d̂t,π(s)− dt,π(s)| ≤
√

2
m log 2

δ for each t < t0 and state s ∈ S with

probability 1− δ, by Hoeffding’s inequality. A union bound over states and t concludes the proof.

5 Proof of Concept Experiments

We report the results from a preliminary set of experiments2. In each case, the MaxEnt agent learns to access
the set of reachable states within a small number of iterations, while monotonically increasing the entropy of
the induced state distribution.

Recall that Algorithm 1 requires access to an approximate planning oracle and a density estimator
for the induced distribution. Here the density estimator is deliberately chosen to be simple – a count-
based estimate over the discretized state space. It is possible to use neural density estimators and other
function-approximation based estimators in its stead.

2The open-source implementations may be found at https://github.com/abbyvansoest/maxent_base and https://github.

com/abbyvansoest/maxent_ant.
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Figure 3: The number of distinct xy states visited by Ant at various epochs. Results were averaged over
N = 20 executions. As the number of policies in the mixture increases, the agent reaches more unique states
in the same amount of time.

5.1 Environments and the discretization procedure

The 2-dimensional state spaces for MountainCar and Pendulum (from [BCP+16]) were discretized evenly to
grids of size 10× 9 and 8× 8, respectively. For Pendulum, the maximum torque and velocity were capped at
1.0 and 7.0, respectively.

The 29-dimensional state space for Ant (with a Mujoco engine) was first reduced to dimension 7, combining
the agent’s x and y location in the gridspace with a 5-dimensional random projection of the remaining 27
states. The x and y dimensions were discretized into 16 bins in the range [−12, 12]. The other dimensions
were each normalized and discretized into 15 bins in the range [−1, 1]. While the planning agent agent had
access to the full state representation, the density estimation was performed exclusively on the reduced
representation.

5.2 Algorithmic details

Reward function. Each planning agent was trained to maximize a KL divergence objective function, ie.
KL(Unif||dπ).

MountainCar and Pendulum. The planning oracle is a REINFORCE [SMSM00] agent, where the the
output policy from the previous iteration is used as the initial policy for the next iteration. The policy class is
a neural net with a single hidden layer consisting of 128 units. The agent is trained on 400 and 200 episodes
every epoch for MountainCar and Pendulum, respectively. The baseline agent chooses its action randomly at
every time step.

Ant. The planning oracle is a Soft Actor-Critic [HZAL18] agent. The policy class is a neural net with 2
hidden layers composed of 300 units and the ReLU activation function. The agent is trained for 30 episodes,
each of which consists of a roll-out of 5000 steps. The mixed policy is executed over 10 trials of T = 10000
steps at the end of each epoch in order to approximate the policy distribution and compute the next reward
function. The baseline agent chooses its actions randomly for the same number of trials and steps.
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