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Abstract

In this note, we derive concentration inequalities for random vectors with subGaussian norm
(a generalization of both subGaussian random vectors and norm bounded random vectors),
which are tight up to logarithmic factors.

1 Introduction

Concentration (large deviation) inequalities are one of the most important subjects of study in
probability theory. A class of distributions for which sharp concentration inequalities have been
developed is the class of subGaussian distributions.

Definition 1. A random variable X ∈ R is subGaussian, if there exists σ ∈ R so that:

Eeθ(X−EX) ≤ e
θ2σ2

2 , ∀θ ∈ R.

Definition 2. A random vector X ∈ Rd is subGaussian, if there exists σ ∈ R so that:

Ee〈v,X−EX〉 ≤ e
‖v‖2σ2

2 , ∀v ∈ R
d.

The concentration bounds of subGaussian random vectors/variables depends on the parameter σ
– smaller the σ better the concentration bounds. While subGaussian distributions arise naturally
in several applications, there are settings where the random vectors have nice concentration prop-
erties but the subGaussian parameter σ is very large (so that applying concentration bounds for
general subGaussian random vectors gives loose bounds). In this short note, we consider a related
but different class of distributions, called norm-subGaussian random vectors and establish tighter
concentration bounds for them.
Organization: In Section 2, we introduce norm subGaussian random vectors and some of their
properties and we prove our main results in Section 3. We conclude in Section 4.

1

http://arxiv.org/abs/1902.03736v1


2 Norm SubGaussian Random Vector

The norm subGaussian random vector is defined as follows.

Definition 3. A random vector X ∈ R
d is norm-subGaussian (or nSG(σ)), if ∃ σ so that:

P (‖X− EX‖ ≥ t) ≤ 2e−
t2

2σ2 , ∀t ∈ R.

Norm subGaussian includes both subGaussian (with a smaller σ parameter) and bounded norm
random vectors as special cases.

Lemma 1. There exists absolute constant c so that following random vectors are all nSG(c · σ).

1. A bounded random vector X ∈ R
d so that ‖X‖ ≤ σ.

2. A random vector X ∈ R
d, where X = ξe1 and random variable ξ ∈ R is σ-subGaussian.

3. A random vector X ∈ R
d that is (σ/

√
d)-subGaussian.

Proof. The fact that the first two random vectors are nSG(c · σ) immediately follows from the
arguements in scalar version counterparts. For the third random vector, WLOG, assume EX = 0.
Let {vi} be a 1/2-cover of unit sphere S

d−1 (thus ‖vi‖ = 1). By property of subGaussian random
vector, we know for each fixed vi:

P(〈vi,X〉 ≥ t) ≤ e−
dt2

2σ2

Then let v(X) = X/‖X‖, since {vi} is a 1/2-cover, there always exists a j(X) so that vj(X) in
cover and ‖v(X) − vj(X)‖ ≤ 1/2. Therefore, we have:

‖X‖ =〈v(X),X〉 = 〈vj(X),X〉+ 〈v(X) − vj(X),X〉
≤〈vj(X),X〉+ ‖X‖/2

Rearranging gives ‖X‖ ≤ 2〈vj(X),X〉. Finally, the covering number of 1/2-cover over Sd−1 can be

upper bounded by 4d. Therefore, by union bound:

P(‖X‖ ≥ t) ≤ P(〈vj(X),X〉 ≥ t/2) ≤ P(∃i, 〈vi,X〉 ≥ t/2) ≤ 4de−
dt2

8σ2

Now we are ready to check the second claim of Lemma 1, when t2 ≤ 8σ2 ln 4, we have,

P(‖X‖ ≥ t) ≤ 1 ≤ 2e−
t2

16σ2

when t2 > 8σ2 ln 4, we let t2 = 8σ2 ln 4 + s where s > 0, then:

P(‖X‖ ≥ t) ≤ 4de−
dt2

8σ2 = e−
ds

8σ2 ≤ e−
s

16σ2 = 2e−
t2

16σ2

In sum, this proves that X is nSG(2
√
2 · σ).

The following lemma gives equivalent characterizations of norm subGaussian in terms of moments
and moment generating function (MGF).
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Lemma 2 (Properties of norm-subGaussian). For random vector X ∈ R
d, following statements

are equivalent up to absolute constant difference in σ.

1. Tails: P(‖X‖ ≥ t) ≤ 2e−
t2

2σ2 .

2. Moments: (E‖X‖p)
1

p ≤ σ
√
p for any p ∈ N.

3. Super-exponential moment: Ee
‖X‖2

σ2 ≤ e.

Proof. Note ‖X‖ is a 1-dimensional random variable. This lemma directly follows from the equiv-
alent properties of 1-dimensional subGaussian, for instance, Lemma 5.5 in [Vershynin, 2010].

The following lemma says that if a random vector is nSG(σ), then its norm squared is subexpo-
nential and its projection on any direction a is subGaussian random variable.

Lemma 3. There is an absolute constant c so that if random vector X ∈ Rd is zero-mean nSG(σ),
then ‖X‖2 is c·σ2-subExponential, and for any fixed unit vector v ∈ S

d−1, 〈v,X〉 is c·σ-subGaussian.

The undesirable thing about the MGF characterization in Lemma 2 is that even if X is a zero mean
random vector, ‖X‖ is not zero mean, so it is difficult to directly work with MGF of ‖X‖. Instead,
we first convert the random vector X to a matrix Y and characterize the MGF of Y.

Lemma 4 (MGF Characterization). There is an absolute constant c, if random vector X ∈ Rd is

zero-mean nSG(σ), then let

Y :=

(

0 X⊤

X 0

)

∈ R
(d+1)×(d+1)

we have EeθY � ec·θ
2σ2I for any θ ∈ R.

Proof. Note Y is a rank-2 matrix whose eigenvalues are ‖X‖,−‖X‖, and EY2p+1 = 0 for any
p ∈ N. On the other hand, we also have ‖Y2p‖ ≤ ‖X‖2p for any p ∈ N. Therefore, by Lemma 2,
there exists constant c, for any θ ∈ R:

EeθY = I+
∞
∑

p=1

θ2pEY2p
i

(2p)!
�



1 +
∞
∑

p=1

θ2pE‖X‖2p
(2p)!



 I �



1 +
∞
∑

p=1

(c · θ2σ2p)p
(2p)!



 I � ec·θ
2σ2I

where in the last inequality we used the fact that pp

(2p)! ≤ 1
p! , this finishes the proof.

3 Vector Martingales with SubGaussian Norm

In this section, we will prove our main result (Lemma 6, Corollaries 7 and 8) giving concentration
bounds for norm subGaussian random vectors. The main tool we use is Lieb’s concavity theorem.

Theorem 5 (Tropp [2012]). Let A be a fixed symmetric matrix, and let Y be a random symmetric

matrix. Then,

Etr(exp(A+Y)) ≤ tr exp(A+ log(EeY))

We will prove our concentration result for norm subGaussian random vectors in a general setting
where the subGaussian parameter σi for the i

th vector can itself be a random variable.
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Condition 4. Let random vectorsX1, . . . ,Xn ∈ R
d, and corresponding filtrations Fi = σ(X1, . . . ,Xi)

for i ∈ [n] satisfy that Xi|Fi−1 is zero-mean nSG(σi) with σi ∈ Fi−1. i.e.,

E[Xi|Fi−1] = 0, P (‖Xi‖ ≥ t|Fi−1) ≤ 2e
− t2

2σ2

i , ∀t ∈ R,∀i ∈ [n].

Lemma 6. There exists an absolute constant c such that if X1, . . . ,Xn ∈ R
d satisfy condition 4,

then for any fixed δ > 0, θ > 0, with probability at least 1− δ:

‖
n
∑

i=1

Xi‖ ≤ c · θ
n
∑

i=1

σ2i +
1

θ
log

2d

δ

Proof. According to Lemma 4, there exists an absolute constant c so that E[eθYi |Fi−1] � ec·θ
2σ2i I

holds for any i ∈ [n]. Therefore, we have:

Etr exp(−c · θ2
n
∑

i=1

σ2i I+ θ

n
∑

i=1

Yi) = E{E[tr exp(−c · θ2
n
∑

i=1

σ2i I+ θ

n
∑

i=1

Yi)|Fn−1]}

(1)

≤Etr exp(−c · θ2
n
∑

i=1

σ2i I+ θ
n−1
∑

i=1

Yi + logE[eθYn |Fn−1])
(2)

≤ Etr exp(−c · θ2
n−1
∑

i=1

σ2i I+ θ
n−1
∑

i=1

Yi)

≤ . . . ≤ tr exp(0I) = d

where step (1) is due to Theorem 5, and step (2) used the fact that if matrix A � B, then
eC+A � eC+B. On the other hand, since identity matrix commutes with any matrix, we know:

exp(−c · θ2
n
∑

i=1

σ2i I+ θ

n
∑

i=1

Yi) = exp(−c · θ2
n
∑

i=1

σ2i ) · exp(θ
n
∑

i=1

Yi)

Therefore, for any t ≥ 0, θ ≥ 0, by Markov’s inequality, we have:

P

[

‖
n
∑

i=1

Xi‖ ≥ c · θ
n
∑

i=1

σ2i + t/θ

]

(1)
= P

[

‖
n
∑

i=1

Yi‖ ≥ c · θ
n
∑

i=1

σ2i + t/θ

]

(2)
=2P

[

λmax

(

n
∑

i=1

Yi

)

≥ c · θ
n
∑

i=1

σ2i + t/θ

]

= 2P
[

λmax

(

eθ
∑n

i=1
Yi

)

≥ ec·θ
2
∑n

i=1
σ2i +t

]

≤2P
[

tr
(

eθ
∑n

i=1
Yi

)

≥ ec·θ
2
∑n

i=1
σ2i +t

]

≤ 2e−tEtr
(

e−c·θ
2
∑n

i=1
σ2i I+θ

∑n
i=1

Yi

)

≤ 2de−t

where step (1) is because
∑n

i=1Yi is a rank-2 matrix whose eigenvalues are ‖∑n
i=1Xi‖,−‖∑n

i=1Xi‖;
step (2) is due to all preconditions are symmetric with respect to 0. Finally, setting RHS equal to
δ, we finish the proof.

Corollary 7 (Hoeffding type inequality for norm-subGaussian). There exists an absolute constant c
such that if X1, . . . ,Xn ∈ R

d satisfy condition 4 with fixed {σi}, then for any δ > 0, with probability

at least 1− δ:

‖
n
∑

i=1

Xi‖ ≤ c ·

√

√

√

√

n
∑

i=1

σ2i log
2d

δ
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Proof. Since now {σi} are fixed which are not random, we can pick θ in Lemma 6 as a function of

{σi}. Indeed, pick θ =
√

1∑n
i=1

σ2i
log 2d

δ
finishes the proof.

Corollary 8. There exists an absolute constant c such that if X1, . . . ,Xn ∈ R
d satisfy condition

4, then for any fixed δ > 0, and B > b > 0, with probability at least 1− δ:

either

n
∑

i=1

σ2i ≥ B or ‖
n
∑

i=1

Xi‖ ≤ c ·

√

√

√

√max{
n
∑

i=1

σ2i , b} · (log
2d

δ
+ log log

B

b
)

Proof. For simplicity, denote log factor ι := log 2d
δ
+ log log B

b
By Lemma 6, we know for any fixed

θ, with probability 1− δ · log−1(B/b), we have:

‖
n
∑

i=1

Xi‖ ≤ c · θ
n
∑

i=1

σ2i +
ι

θ

Construct two sets of Ψ = {ψ1, . . . , ψs} and Θ = {θ1, . . . , θs}, where ψj = 2j−1 · b and θj =
√

ι
ψj

with last element ψs ≤ B, 2ψs > B. It is easy to see |Ψ| = |Θ| ≤ log(B/b). By union bound, we
have with probability 1− δ:

‖
n
∑

i=1

Xi‖ ≤ min
j∈[s]

[

c · θj
n
∑

i=1

σ2i +
ι

θj

]

Consider following two cases: (1)
∑n

i=1 σ
2
i ∈ [b,B]. Then, there exists j ∈ [s] such that ψj ≤

∑n
i=1 σ

2
i < 2ψj :

‖
n
∑

i=1

Xi‖ ≤ c · θj
n
∑

i=1

σ2i +
ι

θj
= c ·

√

ι

ψj

n
∑

i=1

σ2i + ι ·
√

ψj
ι

≤ (2c+ 1)

√

√

√

√

n
∑

i=1

σ2i · ι

(2)
∑n

i=1 σ
2
i ∈ [0, b). In this case we know ψ1 = b and:

‖
n
∑

i=1

Xi‖ ≤ c · θ1
n
∑

i=1

σ2i +
ι

θ1
= c ·

√

ι

b

n
∑

i=1

σ2i + ι ·
√

b

ι
≤ (2c+ 1)

√
b · ι

Combining two cases we finish the proof.

4 Conclusion

In this short note, we introduced the notion of norm subGaussian random vectors, which in-
clude subGaussian random vectors and bounded random vectors as special cases. While it is

true that subGaussian
(

σ√
d

)

⊆ nSG(σ) ⊆ subGaussian(σ), applying concentration bounds for

subGaussian(σ) would yield bounds which have at least linear dependence on d. In contrast, the
bounds we develop (in Lemma 6 and Corollaries 7 and 8) have only logarithmic dependence on d.
It is not clear if this logarithmic dependence is tight – totally eliminating this dependence is an
interesting open problem.
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