
ar
X

iv
:1

90
2.

08
72

1v
1

 [
cs

.L
G

]
 2

3
Fe

b
20

19

Online Control with Adversarial Disturbances

Naman Agarwal1 Brian Bullins1 2 Elad Hazan1 2

Sham M. Kakade1 3 4 Karan Singh1 2

1 Google AI Princeton
2 Department of Computer Science, Princeton University

3 Allen School of Computer Science and Engineering, University of Washington
4 Department of Statistics, University of Washington

namanagarwal@google.com, {bbullins,ehazan,karans}@princeton.edu,
sham@cs.washington.edu

February 26, 2019

Abstract

We study the control of a linear dynamical system with adversarial disturbances (as opposed to
statistical noise). The objective we consider is one of regret: we desire an online control procedure that
can do nearly as well as that of a procedure that has full knowledge of the disturbances in hindsight. Our
main result is an efficient algorithm that provides nearly tight regret bounds for this problem. From a
technical standpoint, this work generalizes upon previous work in two main aspects: our model allows
for adversarial noise in the dynamics, and allows for general convex costs.

1 Introduction

This paper studies the robust control of linear dynamical systems. A linear dynamical system is governed
by the dynamics equation

xt+1 = Axt +But + wt, (1.1)

where xt is the state, ut is the control and wt is a disturbance to the system. At every time step t, the
controller suffers a cost c(xt, ut) to enforce the control. In this paper, we consider the setting of online control
with arbitrary disturbances. Formally, the setting involves, at every time step t, an adversary selecting a
convex cost function ct(x, u) and a disturbance wt, and the goal of the controller is to generate a sequence
of controls ut such that a sequence of convex costs ct(ut, xt) is minimized.

The above setting generalizes a fundamental problem in control theory (including the Linear Quadratic
Regulator) which has been studied over several decades, surveyed below. However, despite the significant
research literature on the problem, our generalization and results address several challenges that have re-
mained.

Challenge 1. Perhaps the most important challenge we address is in dealing with arbitrary disturbances
wt in the dynamics. This is a difficult problem, and so standard approaches almost exclusively assume
i.i.d. Gaussian noise. Worst-case approaches in the control literature, also known as H∞-control and its
variants, are overly pessimistic. Instead, we take an online (adaptive) approach to dealing with adversarial
disturbances.

Challenge 2. Another limitation for efficient methods is the classical assumption that the costs c(xt, ut)
are quadratic, as is the case for the linear quadratic regulator. Part of the focus in the literature on the
quadratic costs is due to special properties that allow for efficient computation of the best linear controller in

1

http://arxiv.org/abs/1902.08721v1

hindsight. One of our main goals is to introduce a more general technique that allows for efficient algorithms
even when faced with arbitrary convex costs.

Our contributions. In this paper, we tackle both challenges outlined above: coping with adversarial noise,
and general loss functions in an online setting. For this we turn to the time-trusted methodology of regret
minimization in online learning. In the field of online learning, regret minimization is known to be more
robust and general than statistical learning, and a host of convex relaxation techniques are readily available.
To define the performance metric, denote for any control algorithm A,

JT (A) =
T
∑

t=1

ct(xt, ut).

The standard comparator in control is a linear controller, which generates a control signal as a linear function
of the state, i.e. ut = −Kxt. Let J(K) denote the cost of a linear controller from a certain class K ∈ K.
For an algorithm A, we define the regret as the sub-optimality of its cost with respect to the best linear
controller from a certain set

Regret = JT (A) − min
K∈K

JT (K).

Our main result is an efficient algorithm for control which achieves regret O(
√
T) in the setting described

above. A similar setting has been considered in literature before [9], but our work generalizes previous work
in the following ways:

1. Our algorithm achieves regret O(
√
T) even in the presence of bounded adversarial disturbances. Previ-

ous regret bounds needed to assume that the disturbances wt are drawn from a distribution with zero
mean and bounded variance.

2. Our regret bounds apply to any sequence of adversarially chosen convex loss functions. Previous
efficient algorithms applied to convex quadratic costs only.

Our results above are obtained using a host of techniques from online learning and online convex optimiza-
tion, notably online learning for loss functions with memory and improper learning using convex relaxation.

2 Related Work

Online Learning: Our approach stems from the study of regret minimization in online learning, this
paper advocates for worst-case regret as a robust performance metric in the presence of adversarial nosie. A
special case of our study is that of regret minimization in stateless (with A = 0) systems, which is a well
studied problem in machine learning. See books and surveys on the subject [8, 15, 20]. Of particular interest
to our study is the setting of online learning with memory [4].

Learning and Control in Linear Dynamical Systems: The modern setting for linear dynamical
systems arose in the seminal work of Kalman [18], who introduced the Kalman filter as a recursive least-
squares solution for maximum likelihood estimation (MLE) of Gaussian perturbations to the system in
latent-state systems. The framework and filtering algorithm have proven to be a mainstay in control theory
and time-series analysis; indeed, the term Kalman filter model is often used interchangeably with LDS. We
refer the reader to the classic survey [19], and the extensive overview of recent literature in [14]. Most of this
literature, as well as most of classical control theory, deals with zero-mean random noise, mostly Normally
distributed.

Recently, there has been a renewed interest in learning both fully-observable & latent-state linear dy-
namical systems. Sample complexity and regret bounds (for Gaussian noise) were obtained in [2, 1]. The
fully-observable and convex cases were revisited in [10, 21]. The technique of spectral filtering for learning
and controlling non-observable systems was introduced and studied in [16, 6, 17]. Provable control in the
Gaussian noise setting was also studied in [13].

2

Robust Control: The most notable attempts to handle adversarial perturbations in the dynamics are
called H∞ control [25, 22]. In this setting, the controller solves for the best linear controller assuming worst
case noise to come, i.e.

min
K1

max
ε1:T

min
K2

...min
Kt

max
εT

∑

t

ct(xt, ut),

assuming similar linear dynamics as in equation (1.1). In comparison, we do not solve for the entire noise
trajectory in advance, but adjust for it iteratively. Another difference is computational: the above mathemat-
ical program may be hard to compute for general cost functions, as compared to our efficient gradient-based
algorithm.

Non-stochastic MDPs: The setting we consider, control in systems with linear transition dynamics [7]
in presence of adversarial disturbances, can be cast as that of planning in an adversarially changing MDP
[5, 11]. The results obtained via this reduction are unsatisfactory because these regret bounds scale with
the size of the state space, which is usually exponential in the dimension of the system. In addition, the
regret in these scale as Ω(T

2
3). In comparison, [24, 12] solve the online planning problem for MDPs with

fixed dynamics and changing costs. The satisfying aspect of their result is that the regret bound does not
explicitly depend on the size of the state space, and scales as O(

√
T). However, the dynamics are fixed and

without (adversarial) noise.

LQR with changing costs: For the Linear Quadratic Regulator problem, [9] consider changing quadratic
costs with stochastic noise to get a O(

√
T) regret bound. This work is well aligned with results, and the

present paper employs some notions developed therein (eg. strong stability). However, the techniques used
in [9] (eg. the SDP formulation for a linear controller) are strongly reliant on the quadratic nature of the
cost functions and stochasticity of the disturbances. In particular, even for the offline problem, to the best
of our knowledge, there does not exist a SDP formulation to determine the best linear controller for convex
losses. In an earlier work, [3] considers a more restricted setting with fixed, deterministic dynamics (hence,
noiseless) and changing quadratic costs.

3 Problem Setting

3.1 Interaction Model

The Linear Dynamical System is a Markov decision process on continuous state and action spaces, with
linear transition dynamics. In each round t, the learner outputs an action ut on observing the state xt and
incurs a cost of ct(xt, ut), where ct(·, ·) is convex. The system then transitions to a new state xt+1 according
to

xt+1 = Axt +But + wt.

In the above definition, wt is the disturbance sequence the system suffers at each time step. In this paper,
we make no distributional assumptions on wt. The sequence wt is not made known to the learner in advance.

For any algorithm A, the cost we attribute to it is

JT (A) =

T
∑

t=1

ct(xt, ut)

where xt+1 = Axt + But + wt and ut = A(x1, . . . xt). With some abuse of notation, we shall use J(K) to
denote the cost of a linear controller π(K) which chooses the action as ut = −Kxt.

3

3.2 Assumptions

We make the following assumptions throughout the paper. We remark that they are less restrictive, and
hence, allow for more general systems than those considered by the previous works. In particular, we allow
for adversarial (rather than i.i.d. stochastic) noise, and convex cost functions. Also, the non-stochastic
nature of the disturbances permits, without loss of generality, the assumption that x0 = 0.

Assumption 3.1. The matrices that govern the dynamics are bounded, ie., ‖A‖ ≤ κA, ‖B‖ ≤ κB. The
perturbation introduced per time step is bounded, ie., ‖wt‖ ≤ W .

Assumption 3.2. The costs ct(x, u) are convex. Further, as long as it is guaranteed that ‖x‖, ‖u‖ ≤ D, it
holds that

|ct(x, u)| ≤ βD2, ‖∇xct(x, u)‖, ‖∇uct(x, u)‖ ≤ GD.

Following the definitions in [9], we work on the following class of linear controllers.

Definition 3.3. A linear policy K is (κ, γ)-strongly stable if there exist matrices L,H satisfying A−BK =
HLH−1, such that following two conditions are met:

1. The spectral norm of L is strictly smaller than unity, ie., ‖L‖ ≤ 1− γ.

2. The controller and the transforming matrices are bounded, ie., ‖K‖ ≤ κ and ‖H‖, ‖H−1‖ ≤ κ.

3.3 Regret Formulation

Let K = {K : K is (κ, γ)-strongly stable}. For an algorithm A, the regret is the sub-optimality of its cost
with respect to a best linear controller.

Regret = JT (A) − min
K∈K

JT (K).

3.4 Proof Techniques and Overview

Choice of Policy Class: We begin by parameterizing the policy we execute at every step as a linear
function of the disturbances in the past in Definition 4.1. Similar parameterization has been considered in the
system level synthesis framework (see [23]). This leads to a convex relaxation of the problem. Optimization
on alternative paramterizations including an SDP based framework [9] or a direct parametrization [13] have
been studied in literature but they seem unable to capture general convex functions as well as adversarial
disturbance or lead to a non-convex loss. To avoid a linear dependence on time for the number of parameters
in our policy we additionally include a stable linear controller in our policy allowing us to effectively consider
only O(γ−1 log(T)) previous perturbations. Lemma 5.2 makes this notion of approximation precise.

Reduction to OCO with memory: The choice of the policy class with an appropriately chosen horizon
H allows us to reduce the problem to compete with functions with truncated memory. This naturally falls
under the class of online convex optimization with memory (see Section 4.5). Theorem 5.3 makes this
reduction precise. Finally to bound the regret on truncated functions we use the Online Gradient Descent
based approach specified in [4], which requires a bound on Lipschitz constants which we provide in Section
5.3.1. This reduction is inspired from the ideas introduced in [12].

3.5 Roadmap

The next section provides the suite of definition and notation required to define our algorithm and regret
bounds. Section 5 contains our main algorithm 1 and the main regret guarantees 5.1 followed by the proof
and the requisite lemmas and their respective proofs.

4

4 Preliminaries

In this section, we establish some important definitions that will prove useful throughout the paper.

4.1 Notation

We reserve the letters x, y for states and u, v for control actions. We denote by d = max(dim(x), dim(u)), i.e.,
a bound on the dimensionality of the problem. We reserve capital letters A,B,K,M for matrices associated
with the system and the policy. Other capital letters are reserved for universal constants in the paper.

4.2 A Disturbance-Action Policy Class

We put forth the notion of a disturbance-action controller which chooses the action as a linear map of the past
disturbances. Any disturbance-action controller ensures that the state of a system executing such a policy
may be expressed as a linear function of the parameters of the policy. This property is convenient in that it
permits efficient optimization over the parameters of such a policy. The situation may be contrasted with that
of a linear controller. While the action recommended by a linear controller is also linear in past disturbances
(a consequence of being linear in the current state), the state sequence produced on the execution of a linear
policy is a not a linear function of its parameters.

Definition 4.1 (Disturbance-Action Policy). A disturbance-action policy π(M,K) is specified by param-
eters M = (M [1], . . . ,M [H]) and a fixed matrix K. At every time t, such a policy π(M,K) chooses the
recommended action ut at a state xt

1, defined as

ut = −Kxt +

H
∑

i=1

M iwt−i.

For notational convenience, here it may be considered that wi = 0 for all i < 0.

We refer to the policy played at time t as Mt = {M [i]
t } where the subscript t refers to the time index

and the superscript [i] refers to the action of Mt on wt−i. Note that such a policy can be executed because
wt−1 is perfectly determined on the specification of xt as wt−1 = xt−Axt−1−But−1. It shall be established
in later sections that such a policy class can approximate any linear policy with a strongly stable matrix in
terms of the total cost suffered.

4.3 Evolution of State

In this section, we reason about the evolution of the state of a linear dynamical system under a non-stationary

policy π = (π0, . . . , πT−1) composed of T policies, where each πt is specified by πt(Mt = (M
[1]
t , . . . ,M

[H]
t),K).

Again, with some abuse of notation, we shall use π((M0, . . . ,MT−1),K) to denote such a non-stationary
policy.

The following definitions serve to ease the burden of notation.

1. Define ÃK = A−BK. ÃK shall be helpful in describing the evolution of state starting from a non-zero
state in the absence of disturbances.

2. xK
t (M0, . . . ,Mt−1) is the state attained by the system upon execution of a non-stationary policy

π((M0, . . . ,Mt−1),K). We drop the arguments Mi and the K from the definition of xt when it is
clear from the context. If the same policy M is used across all time steps, we compress the notation
to xK

t (M). Note that xK
t (0) refers to running the linear policy K in the standard way.

1
xt is completely determined given w0 . . . wt−1. Hence, the use of xt only serves to ease presentation.

5

3. ΨK
t,i(M0 . . . ,Mt−1) is a transfer matrix that describes the effect of wt−i on the state xt+1, formally

defined below. When the arguments to ΨK
t,i are clear from the context, we drop the arguments. When

M is the same across all arguments we suppress the notation to ΨK
t,i(M).

Definition 4.2. Define the disturbance-state transfer matrix ΨK
t,i to be

ΨK
t,i(Mt−H , . . . ,Mt−1) = Ãi

K1i≤H +

H
∑

j=1

Ã
j
KBM

[i−j]
t−j 1i−j∈[1,H].

It will be worthwhile to note that ΨK
t,i is linear in Mt−1, . . . ,Mt−H .

Lemma 4.3. If ut is chosen as a non-stationary policy π((M1, . . . ,MT),K) recommends, then the state
sequence is governed as follows:

xt+1 =

t
∑

i=0

Ψt,iwt−i, (4.1)

which can equivalently be written as

xt+1 = ÃH+1
K xt−H +

2H
∑

i=0

Ψt,iwt−i. (4.2)

4.4 Idealized Setting

Note that the counter-factual nature of regret in the control setting implies in the loss at a time step t,
depends on all the choices made in the past. To efficiently deal with this we propose that our optimization
problem only consider the effect of the past H steps while planning, forgetting about the state, the system
was at time t − H . We will show later that the above scheme tracks the true cost suffered upto a small
additional loss. To formally define this idea, we need the following definition on ideal state.

Definition 4.4 (Ideal State & Action). Define an ideal state yKt+1 which is the state the system would have
reached if it played the non-stationary policy (Mt−H , . . . ,Mt) at all time steps from t − H to t, assuming
the state at t −H is 0. Similarly, define vKt (Mt−H , . . . ,Mt) to be an idealized action that would have been
executed at time t if the state observed at time t is yKt (Mt−H , . . . ,Mt−1). Formally,

yKt+1(Mt−H , . . . ,Mt) =

2H
∑

i=0

Ψt,iwt−i,

vKt (Mt−H , . . . ,Mt) = −KyKt +
H
∑

i=1

M
[i]
t wt−i.

We can now consider the loss of the ideal state and the ideal action.

Definition 4.5 (Ideal Cost). Define the idealized cost function ft to be the cost associated with the idealized
state and idealized action, i.e.,

ft(Mt−H , . . . ,Mt) = ct(y
K
t (Mt−H , . . . ,Mt−1), v

K
t (Mt−H , . . . ,Mt)).

The linearity of yKt in past controllers and the linearity of vKt in its immediate state implies that ft
is a convex function of a linear transformation of Mt−H , . . . ,Mt and hence convex in Mt−H , . . . ,Mt. This
renders it amenable to algorithms for online convex optimization.

In Theorem 5.3 we show that ft and ct on a sequence are close by and this reduction allows us to only
consider the truncated ft while planning allowing for efficiency. The precise notion of minimizing regret such
truncated ft was considered in online learning literature [4] before as online convex optimization(OCO) with
memory. We present an overview of this framework next.

6

4.5 OCO with Memory

We now present an overview of the online convex optimization (OCO) with memory framework, as established
by [4]. In particular, we consider the setting where, for every t, an online player chooses some point xt ∈
K ⊂ R

d, a loss function ft : KH+1 7→ R is revealed, and the learner suffers a loss of ft(xt−H , . . . , xt). We
assume a certain coordinate-wise Lipschitz regularity on ft of the form such that, for any j ∈ {1, . . . , H}, for
any x1, . . . , xH , x̃j ∈ K,

|ft(x1, . . . , xj , . . . , xH)− ft(x1, . . . , x̃j , . . . , xH)| ≤ L‖xj − x̃j‖. (4.3)

In addition, we define f̃t(x) = ft(x, . . . , x), and we let

Gf = sup
t∈{1,...,T},x∈K

‖∇f̃t(x)‖, D = sup
x,y∈K

‖x− y‖. (4.4)

The resulting goal is to minimize the policy regret [5], which is defined as

PolicyRegret=
T
∑

t=H

ft(xt−H , . . . , xt)−min
x∈K

T
∑

t=H

ft(x, . . . , x).

As shown by [4], by running a memory-based OGD, we may bound the policy regret by the following
theorem.

Theorem 4.6. Let {ft}Tt=1 be Lipschitz continuous loss functions with memory such that f̃t are convex, and

let L, D, and Gf be as defined in (4.3) and (4.4). Then, Algorithm 2 generates a sequence {xt}Tt=1 such that

T
∑

t=H

ft(xt−H , . . . , xt)−min
x∈K

T
∑

t=H

ft(x, . . . , x) ≤
D2

η
+ TG2

fη + LH2ηGfT.

Furthermore, setting η = D√
Gf (Gf+LH2)T

implies that

PolicyRegret≤ O

(

D

√

Gf (Gf + LH2)T

)

.

5 Algorithm & Main Result

Algorithm 1 describes our proposed algorithm for controlling linear dynamical systems with adversarial
disturbances which at all times maintains a disturbance-action controller. The algorithm implements the
memory based OGD on the loss ft(·) as described in the previous section. The algorithm requires the
specification of a (κ, γ)-strongly stable matrix K once before the online game. Such a matrix can be obtained
offline using an SDP relaxation as described in [9]. The following theorem states the regret bound Algorithm
1 guarantees.

Theorem 5.1 (Main Theorem). Suppose Algorithm 1 is executed with η = Θ
(

GW
√
T
)−1

, on an LDS

satisfying Assumption 3.1 with control costs satisfying Assumption 3.2. Then, it holds true that

JT (A)− min
K∈K

JT (K) ≤ O
(

GW 2
√
T log(T)

)

,

Furthermore, the algorithm maintains at most O(1) parameters can be implemented in time O(1) per time
step. Here O(·), Θ(·) contain polynomial factors in γ−1, κB, κ, d.

7

Algorithm 1 Online Control Algorithm

1: Input: Step size η, Control Matrix K, Parameters κB, κ, γ, T .
2: Define H = 2κBκ

3γ−1 log(T)
3: Define M = {M = {M [1] . . .M [H]} : ‖M [i]‖ ≤ κ3κB(1 − γ)i}.
4: Initialize M0 ∈ M arbitrarily.
5: for t = 0, . . . , T − 1 do

6: Choose the action ut = ct −Kxt +
∑H

i=1 M
[i]wt−i.

7: Observe the new state xt+1 and record wt = xt+1 −Axt −But.
8: Define the function gt(M) as gt(M) = ft(M, . . .M) (refer Definition 4.5)
9: Set Mt+1 = ΠM(Mt − η∇gt(M))

10: end for

Proof of Theorem 5.1. Note that by the definition of the algorithm we have that all Mt ∈ M, where

M = {M = {M [1] . . .M [H]} : ‖M [i]‖ ≤ κ3κB(1 − γ)i}.

Let D be defined as

D ,
W (κ2 +HκBκ

2a)

γ(1− κ2(1 − γ)H+1)
+

κBκ
3W

γ
.

Let K∗ be the optimal linear policy in hindsight. By definition K∗ is a (κ, γ)-strongly stable matrix.
Using Lemma 5.2 and Theorem 5.3, we have that

min
M∗∈M

(

T
∑

t=0

ft(M∗, . . . ,M∗)

)

−
T
∑

t=0

ct(x
K∗

t (0), uK∗

t (0)) (5.1)

≤ min
M∗∈M

(

T
∑

t=0

ct(x
K
t (M∗), u

K
t (M∗))

)

−
T
∑

t=0

ct(x
K∗

t (0), uK∗

t (0)) + 2TGD2κ3(1 − γ)H+1

≤ 2TGD(1− γ)H+1

(

WHκ2
Bκ

5

γ
+Dκ3

)

. (5.2)

Let M1 . . .MT be the sequence of policies played by the algorithm. Note that by definition of the constraint
set S, we have that

∀t ∈ [T], ∀i ∈ [H] ‖M [i]
t ‖ ≤ κBκ

3(1 − γ)i.

Using Theorem 5.3 we have that

T
∑

t=0

ct(x
K
t , uK

t)−
T
∑

t=0

ft(Mt−H . . .Mt) ≤ 2TGD2κ3(1− γ)H+1. (5.3)

Finally using Theorem 4.6 and using Lemmas 5.6, 5.7 to bound the constants Gf and L associated with
the function ft and by noting that

max
M1,M2∈M

‖M1 −M2‖ ≤ κBκ
3
√
d

γ
,

we have that

T
∑

t=0

ft(Mt−H . . .Mt)− min
M∗∈M

T
∑

t=0

ft(M∗, . . . ,M∗) ≤ 8GWDd3/2κ2
Bκ

6H2.5γ−1
√
T . (5.4)

Summing up (5.1), (5.3) and (5.4), and using the condition that H = κ2

γ log(T), we get the result.

8

5.1 Sufficiency of Disturbance-Action Policies

The class of policies described in Definition 4.1 is powerful enough in its representational capacity to capture
any fixed linear policy. Lemma 5.2 establishes this equivalence in terms of the state and action sequence
each policy produces.

Lemma 5.2 (Sufficiency). For any two (κ, γ)-strongly stable matrices K∗,K, there exists a policy π(M∗,K),

with M∗ = (M
[1]
∗ , . . . ,M

[H]
∗) defined as

M
[i]
∗ = (K∗ −K)(A−BK∗)i−1

such that

T
∑

t=0

(

ct(x
K
t (M∗), u

K
t (M∗))− ct(x

K∗

t (0), uK∗

t (0))
)

≤ T · 2GDWHκ2
Bκ

5(1− γ)H+1

γ
(5.5)

Proof of Lemma 5.2. By definition we have that

xt+1(K
∗) =

t
∑

i=0

Ãi
Kwt−i

Consider the following calculation for M∗ with M
[i]
∗ , (K∗ − K)(A − BK∗)i−1 and for any i ∈ {0 . . .H}.

We have that

ΨK
t,i(M∗) = Ãi

K +

i
∑

j=1

Ã
i−j
K BM [j]

= Ãi
K +

i
∑

j=1

Ã
i−j
K B(K∗ −K)Ãj−1

K∗

= Ãi
K +

i
∑

j=1

Ã
i−j
K (ÃK∗ − ÃK)Ãj−1

K∗

= Ãi
K +

i
∑

j=1

(

Ã
i−j
K Ã

j
K∗ − Ã

i−j+1
K Ã

j−1
K∗

)

= Ãi
K∗

The final equality follows as the sum telescopes. Therefore, we have that

xK
t+1(M∗) =

H
∑

i=0

Ãi
K∗wt−i +

t
∑

i=H+1

ΨK
t,i(M∗)wt−i.

From the above we get that

‖xK∗

t (0)− xK
t (M∗)‖ ≤ W

t
∑

i=H+1

‖ΨK
t,i(M∗)‖ ≤ WHκ2

Bκ
5(1− γ)H+1

γ
, (5.6)

where the last inequality follows from using Lemma 5.4 and using the fact that ‖M [i]
∗ ‖ ≤ κBκ

3(1− γ)i.

9

Further comparing the actions taken by the two policies we get that

‖uK∗

t − uK
t (M∗)‖ =

∥

∥

∥

∥

∥

−K∗xK∗

t +KxK
t (M∗)−

t
∑

i=0

(K∗ −K)Ãi
K∗wt−i

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

t
∑

i=H+1

K
(

Ãi
K∗ +ΨK

t,i(M∗)
)

wt−i

∥

∥

∥

∥

∥

≤ 2WHκ2
Bκ

5(1 − γ)H+1

γ
.

Using the above, Assumption 3.2 and Lemma 5.5, we get that

T
∑

t=0

(

ct(x
K
t (M∗), u

K
t (M∗))− ct(x

K∗

t , uK∗

t)
)

≤ T · 2GDWHκ2
Bκ

5(1 − γ)H+1

γ
.

5.2 Approximation Theorems

The following theorem relates the cost of ft(Mt−H , . . .Mt) with the actual cost ct(xt, ut).

Theorem 5.3. For any (κ, γ)-strongly stable K, any number a and any sequence of policies M1 . . .MT

satisfying ‖M [i]
t ‖ ≤ a(1− γ)i, if the perturbations are bounded by W , we have that

T
∑

t=1

ft(Mt−H , . . .Mt)−
T
∑

t=1

ct(x
K
t , uK

t) ≤ 2TGD2κ3(1− γ)H+1 (5.7)

where

D ,
W (κ2 +HκBκ

2a)

γ(1− κ2(1− γ)H+1)
+

aW

γ

Before giving the proof of the above theorem, we will need a few lemmas which will be useful.

Lemma 5.4. Let K be a (κ, γ)-strongly stable matrix, a be any number and Mt be a sequence such that for

all i, t, we have ‖M [i]
t ‖ ≤ a(1− γ)i, then we have that for all i, t

‖ΨK
t,i‖ ≤ κ2(1− γ)i · 1i≤H +HκBκ

2a(1− γ)i

Proof of Lemma 5.4. The proof follows by noticing that

‖ΨK
t,i‖ ≤ ‖Ãi

K‖1i≤H +

H
∑

j=1

‖Ãj
K‖‖B‖‖M [i−j]

t−j ‖1i−j∈[1,H]

≤ κ2(1− γ)i · 1i≤H +

H
∑

j=1

κBκ
2a(1− γ)i

≤ κ2(1− γ)i · 1i≤H +HκBκ
2a(1− γ)i,

where the second and the third inequalities follow by using the fact that K is a (κ, γ)-strongly stable matrix
and the conditions on the spectral norm of M .

We now derive a bound on the norm of each of the states.

10

Lemma 5.5. Suppose the system satisfies Assumption 3.1 and let Mt be a sequence such that for all i, t, we

have that ‖M [i]
t ‖ ≤ a(1− γ)i for a number a. Define

D ,
W (κ2 +HκBκ

2a)

γ(1− κ2(1− γ)H+1)
+

aW

γ

Further suppose K∗ is a (κ, γ)-strongly stable matrix. We have that for all t

max(‖xK
t ‖, ‖yKt (Mt−H−1 . . .Mt−1)‖, ‖xt(K

∗)‖) ≤ D

max(‖uK
t ‖, ‖vKt (Mt−H . . .Mt)‖) ≤ D

‖xK
t − yKt (Mt−H−1 . . .Mt−1)‖ ≤ κ2(1− γ)H+1D

‖uK
t − vKt (Mt−H . . .Mt)‖ ≤ κ3(1− γ)H+1D

Proof of Lemma 5.5. Using the definition of xt we have that

‖xK
t ‖ ≤ κ2(1− γ)H+1‖xt−H‖+W ·

(

2H
∑

i=0

‖Ψt,i‖
)

≤ κ2(1− γ)H+1‖xt−H‖+W ·
(

κ2 +HκBκ
2a

γ

)

The above recurrence can be seen to easily satisfy the following upper bound.

‖xK
t ‖ ≤ W (κ2 +HκBκ

2a)

γ(1− κ2(1 − γ)H+1)
≤ D (5.8)

A similar bound can easily be established for

‖yKt (Mt−H−1 . . .Mt−1)‖ ≤ W ·
(

κ2 +HκBκ
2a

γ

)

≤ D (5.9)

It is also easy to see via the definitions that

‖xK
t − yKt (Mt−H−1 . . .Mt−1)‖ ≤ ‖Ãi

K‖‖xt−H‖ ≤ κ2(1− γ)H+1D (5.10)

We can finally bound

‖xK∗

t (0)‖ ≤ Wκ2

γ
≤ D

For the actions we can use the definitions to bound the actions as follows using (5.8) and (5.9)

‖uK
t ‖ ≤ ‖Kxt‖+

H
∑

i=1

‖M [i]
t wt−i‖ ≤ κ‖xK

t ‖+ aW

γ
≤ D

‖vKt (Mt−H . . .Mt)‖ ≤ ‖KyKt (Mt−H−1 . . .Mt−1)‖+
H
∑

i=1

‖M [i]
t wt−i‖ ≤ D.

We also have that using (5.10)

‖uK
t − vKt (Mt−H . . .M)‖

= K(xK
t − yKt (Mt−H−1 . . .Mt−1))

≤ κ3(1− γ)H+1D.

11

Finally, we prove Theroem 5.3.

Proof of Theorem 5.3. Using the above lemmas we can now bound the approximation error between ft and
ct using Assumption 3.2

|ct(xt, ut)− ft(Mt−H . . .Mt)|
= |ct(xt, ut)− ct(y

K
t (Mt−H−1, . . .Mt−1), v

K
t (Mt−H , . . .Mt))|

≤ GD‖xt − yKt (Mt−H−1, . . .Mt−1)‖+GD‖ut − vKt (Mt−H , . . .Mt))‖
≤ 2GD2κ3(1− γ)H+1.

This finishes the proof of Theorem 5.3.

5.3 Bounding the properties of the OCO game with Memory

5.3.1 Bounding the Lipschitz Constant

Lemma 5.6. Consider two policy sequences {Mt−H . . .Mt−k . . .Mt} and {Mt−H . . . M̃t−k . . .Mt} which
differ in exactly one policy played at a time step t− k for k ∈ {0, . . . , H}. Then we have that

|ft(Mt−H . . .Mt−k . . .Mt)− ft(Mt−H . . . M̃t−k . . .Mt)| ≤ 2GDWκBκ
3(1− γ)k

H
∑

i=0

(

‖M [i]
t−k − M̃

[i]
t−k‖

)

.

Proof of Lemma 5.6. For the rest of the proof, we will denote yKt+1({Mt−H . . .Mt−k . . .Mt}) as yKt+1 and

yKt+1({Mt−H . . . M̃t−k . . .Mt}) as ỹKt+1. Similarly define vKt and ṽKt . It follows immediately from the defini-
tions that

‖yKt − ỹKt ‖ = ‖Ãk
KB

2H
∑

i=0

(

M
[i−k]
t−k − M̃

[i−k]
t−k

)

wt−i1i−k∈[1,H]‖

≤ κBκ
2(1− γ)kW

H
∑

i=0

(

‖M [i]
t−k − M̃

[i]
t−k‖

)

.

Furthermore, we have that

‖vKt − ṽKt ‖ = ‖ −K(yt − ỹt) + 1k=0

H
∑

i=0

(M
[i]
t − M̃

[i]
t)wt−i‖

≤ 2κBκ
3(1− γ)kW

H
∑

i=0

(

‖M [i]
t−k − M̃

[i]
t−k‖

)

.

Therefore using assumption 3.2 and Lemma 5.5, we immediately get that

ft(Mt−H . . .Mt−k . . .Mt)− ft(Mt−H . . . M̃t−k . . .Mt) ≤ 2GDWκBκ
3(1− γ)k

H
∑

i=0

(

‖M [i]
t−k − M̃

[i]
t−k‖

)

5.3.2 Bounding the Gradient

Lemma 5.7. For all M such that ‖M [j]‖ ≤ a(1− γ)j for all j ∈ [1, H], we have that

‖∇Mft(M . . .M)‖F ≤ GDWHd

(

2κBκ
3

γ
+H

)

12

Note that since M is a matrix, the ℓ2 norm of the gradient ∇Mft corresponds to to the Frobenius norm
of the ∇Mft matrix. Due to space constraints, we provide the proof in the appendix.

Proof of Lemma 5.7. To derive a crude bound on the quantity in question, it will be sufficient to derive an
absolute value bound on ∇

M
[r]
p,q

ft(M, . . . ,M) for all r, p, q. To this end, we consider the following calculation.

Using Lemma 5.5, we get that yKt (M . . .M), vKt (M . . .M) ≤ D. Therefore, using assumption 3.2, we have
that

|∇
M

[r]
p,q

ft(M . . .M)| ≤ GD

(∥

∥

∥

∥

∥

∂yKt (M)

∂M
[r]
p,q

+
∂vKt (M . . .M)

∂M
[r]
p,q

∥

∥

∥

∥

∥

)

.

We now bound the quantities on the right-hand side:

∥

∥

∥

∥

∥

δyKt (M . . .M)

δM
[r]
p,q

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

2H
∑

i=0

H
∑

j=1

[

∂Ã
j
KBM [i−j]

∂M
[r]
p,q

]

wt−i1i−j∈[1,H]

∥

∥

∥

∥

∥

∥

≤
r+H
∑

i=r

∥

∥

∥

∥

∥

[

∂Ãi−r
K BM [r]

∂M
[r]
p,q

]

wt−i

∥

∥

∥

∥

∥

≤ WκBκ
2

γ
.

Similarly,

∥

∥

∥

∥

∥

∂vKt (M . . .M)

∂M
[r]
p,q

∥

∥

∥

∥

∥

≤ κ

∥

∥

∥

∥

∥

δyKt (M . . .M)

δM
[r]
p,q

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

H
∑

i=0

∂M [i]

∂M
[r]
p,q

wt−i

∥

∥

∥

∥

∥

≤ W

(

κBκ
3

γ
+H

)

.

Combining the above inequalities gives the bound in the lemma.

6 Conclusion

In this paper, we have shown how to control linear dynamical systems with adversarial disturbances through
regret minimization, as well as how to handle general convex costs. Our notion of robust controller is able
to learn and adapt the controller according to the noise encountered during the process. This deviates from
the study of robust control in the framework of H∞ control, that attempts to find a control with worst-case
anticipate of all future noises.

Acknowledgements

Sham Kakade acknowledges funding from the Washington Research Foundation for Innovation in Data-
intensive Discovery, the DARPA award FA8650-18-2-7836, and the ONR award N00014-18-1-2247.

References

[1] Yasin Abbasi-Yadkori, Nevena Lazic, and Csaba Szepesvári. Regret bounds for model-free linear
quadratic control. CoRR, abs/1804.06021, 2018.

[2] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic
systems. In COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11, 2011, Budapest,
Hungary, pages 1–26, 2011.

13

[3] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic
systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26, 2011.

[4] Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries with memory: price of past
mistakes. In Advances in Neural Information Processing Systems, pages 784–792, 2015.

[5] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. arXiv preprint arXiv:1206.6400, 2012.

[6] Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Towards provable
control for unknown linear dynamical systems. 2018.

[7] Dimitri Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific Belmont,
MA, 2005.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

[9] Alon Cohen, Avinatan Hassidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal Talwar.
Online linear quadratic control. arXiv preprint arXiv:1806.07104, 2018.

[10] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for robust
adaptive control of the linear quadratic regulator. CoRR, abs/1805.09388, 2018.

[11] Ofer Dekel and Elad Hazan. Better rates for any adversarial deterministic mdp. In International
Conference on Machine Learning, pages 675–683, 2013.

[12] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathematics
of Operations Research, 34(3):726–736, 2009.

[13] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi. Global convergence of policy gradient
methods for linearized control problems. arXiv preprint arXiv:1801.05039, 2018.

[14] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
arXiv preprint arXiv:1609.05191, 2016.

[15] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3-4):157–325, 2016.

[16] Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general linear
dynamical systems. arXiv preprint arXiv:1802.03981, 2018.

[17] Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral filtering.
In Advances in Neural Information Processing Systems, pages 6702–6712, 2017.

[18] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82.1:35–45, 1960.

[19] Lennart Ljung. System identification: Theory for the User. Prentice Hall, Upper Saddle Riiver, NJ, 2
edition, 1998.

[20] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends R©
in Machine Learning, 4(2):107–194, 2012.

[21] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning without
mixing: Towards a sharp analysis of linear system identification. arXiv preprint arXiv:1802.08334, 2018.

[22] Robert F Stengel. Optimal control and estimation. Courier Corporation, 1994.

14

Algorithm 2 OGD with Memory (OGD-M).

1: Input: Step size η, functions {ft}Tt=m

2: Initialize x0, . . . , xH−1 ∈ K arbitrarily.
3: for t = H, . . . , T do

4: Play xt, suffer loss ft(xt−H , . . . , xt)

5: Set xt+1 = ΠK

(

xt − η∇f̃t(x)
)

6: end for

[23] Yuh-Shyang Wang, Nikolai Matni, and John C Doyle. A system level approach to controller synthesis.
IEEE Transactions on Automatic Control, 2019.

[24] Jia Yuan Yu, Shie Mannor, and Nahum Shimkin. Markov decision processes with arbitrary reward
processes. Mathematics of Operations Research, 34(3):737–757, 2009.

[25] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control, volume 40. Prentice
hall New Jersey, 1996.

A Appendix

B Proof of Theorem 4.6

Proof. By the standard OGD analysis, we know that

T
∑

t=H

f̃t(xt)−min
x∈K

T
∑

t=H

f̃t(x) ≤
D2

η
+ TG2η.

In addition, we know by (4.3) that, for any t ≥ H ,

|ft(xt−H , . . . , xt)− ft(xt, . . . , xt)| ≤ L

H
∑

j=1

‖xt − xt−j‖ ≤ L

H
∑

j=1

j
∑

l=1

‖xt−l+1 − xt−l‖

≤ L

H
∑

j=1

j
∑

l=1

η‖∇f̃t−l(xt−l)‖ ≤ LH2ηG,

and so we have that
∣

∣

∣

∣

∣

T
∑

t=H

ft(xt−H , . . . , xt)−
T
∑

t=H

ft(xt, . . . , xt)

∣

∣

∣

∣

∣

≤ TLH2ηG.

It follows that

T
∑

t=H

ft(xt−H , . . . , xt)−min
x∈K

T
∑

t=H

ft(x, . . . , x) ≤
D2

η
+ TG2

fη + LH2ηGfT.

15

	1 Introduction
	2 Related Work
	3 Problem Setting
	3.1 Interaction Model
	3.2 Assumptions
	3.3 Regret Formulation
	3.4 Proof Techniques and Overview
	3.5 Roadmap

	4 Preliminaries
	4.1 Notation
	4.2 A Disturbance-Action Policy Class
	4.3 Evolution of State
	4.4 Idealized Setting
	4.5 OCO with Memory

	5 Algorithm & Main Result
	5.1 Sufficiency of Disturbance-Action Policies
	5.2 Approximation Theorems
	5.3 Bounding the properties of the OCO game with Memory
	5.3.1 Bounding the Lipschitz Constant
	5.3.2 Bounding the Gradient

	6 Conclusion
	A Appendix
	B Proof of Theorem ??

