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On the Theory of Policy Gradient Methods:

Optimality, Approximation, and Distribution Shift

Alekh Agarwal* Sham M. Kakade† Jason D. Lee‡ Gaurav Mahajan§

Abstract

Policy gradient methods are among the most effective methods in challenging reinforce-

ment learning problems with large state and/or action spaces. However, little is known about

even their most basic theoretical convergence properties, including: if and how fast they con-

verge to a globally optimal solution or how they cope with approximation error due to using

a restricted class of parametric policies. This work provides provable characterizations of the

computational, approximation, and sample size properties of policy gradient methods in the

context of discounted Markov Decision Processes (MDPs). We focus on both: “tabular” policy

parameterizations, where the optimal policy is contained in the class and where we show global

convergence to the optimal policy; and parametric policy classes (considering both log-linear

and neural policy classes), which may not contain the optimal policy and where we provide

agnostic learning results. One central contribution of this work is in providing approximation

guarantees that are average case — which avoid explicit worst-case dependencies on the size

of state space — by making a formal connection to supervised learning under distribution shift.

This characterization shows an important interplay between estimation error, approximation

error, and exploration (as characterized through a precisely defined condition number).

1 Introduction

Policy gradient methods have a long history in the reinforcement learning (RL) literature [Williams,

1992, Sutton et al., 1999, Konda and Tsitsiklis, 2000, Kakade, 2001] and are an attractive class of

algorithms as they are applicable to any differentiable policy parameterization; admit easy exten-

sions to function approximation; easily incorporate structured state and action spaces; are easy to

implement in a simulation based, model-free manner. Owing to their flexibility and generality,

there has also been a flurry of improvements and refinements to make these ideas work robustly

with deep neural network based approaches (see e.g. Schulman et al. [2015, 2017]).
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Despite the large body of empirical work around these methods, their convergence properties

are only established at a relatively coarse level; in particular, the folklore guarantee is that these

methods converge to a stationary point of the objective, assuming adequate smoothness properties

hold and assuming either exact or unbiased estimates of a gradient can be obtained (with appro-

priate regularity conditions on the variance). However, this local convergence viewpoint does not

address some of the most basic theoretical convergence questions, including: 1) if and how fast

they converge to a globally optimal solution (say with a sufficiently rich policy class); 2) how they

cope with approximation error due to using a restricted class of parametric policies; or 3) their

finite sample behavior. These questions are the focus of this work.

Overall, the results of this work place policy gradient methods under a solid theoretical footing,

analogous to the global convergence guarantees of iterative value function based algorithms.

1.1 Our Contributions

This work focuses on first-order and quasi second-order policy gradient methods which directly

work in the space of some parameterized policy class (rather than value-based approaches). We

characterize the computational, approximation, and sample size properties of these methods in

the context of a discounted Markov Decision Process (MDP). We focus on: 1) tabular policy

parameterizations, where there is one parameter per state-action pair so the policy class is complete

in that it contains the optimal policy, and 2) function approximation, where we have a restricted

class or parametric policies which may not contain the globally optimal policy. Note that policy

gradient methods for discrete action MDPs work in the space of stochastic policies, which permits

the policy class to be differentiable. We now discuss our contributions in the both of these contexts.

Tabular case: We consider three algorithms: two of which are first order methods, projected

gradient ascent (on the simplex) and gradient ascent (with a softmax policy parameterization); and

the third algorithm, natural policy gradient ascent, can be viewed as a quasi second-order method

(or preconditioned first-order method). Table 1 summarizes our main results in this case: upper

bounds on the number of iterations taken by these algorithms to find an ǫ-optimal policy, when we

have access to exact policy gradients.

Arguably, the most natural starting point for an analysis of policy gradient methods is to con-

sider directly doing gradient ascent on the policy simplex itself and then to project back onto the

simplex if the constraint is violated after a gradient update; we refer to this algorithm as projected

gradient ascent on the simplex. Using a notion of gradient domination [Polyak, 1963], our results

provably show that any first-order stationary point of the value function results in an approximately

optimal policy, under certain regularity assumptions; this allows for a global convergence analysis

by directly appealing to standard results in the non-convex optimization literature.

A more practical and commonly used parameterization is the softmax parameterization, where

the simplex constraint is explicitly enforced by the exponential parameterization, thus avoiding

projections. This work provides the first global convergence guarantees using only first-order

gradient information for the widely-used softmax parameterization. Our first result for this param-

eterization establishes the asymptotic convergence of the policy gradient algorithm; the analysis

2



Algorithm Iteration complexity

Projected Gradient Ascent on Simplex (Thm 4.1)
O
(

D2
∞|S||A|

(1−γ)6ǫ2

)

Policy Gradient, softmax parameterization (Thm 5.1) asymptotic

Policy Gradient + log barrier regularization,

softmax parameterization (Cor 5.1)
O
(

D2
∞|S|2|A|2
(1−γ)6 ǫ2

)

Natural Policy Gradient (NPG),

softmax parameterization (Thm 5.3)

2
(1−γ)2ǫ

Table 1: Iteration Complexities with Exact Gradients for the Tabular Case: A summary

of the number of iterations required by different algorithms to find a policy π such that V ⋆(s0) −
V π(s0) ≤ ǫ for some fixed s0, assuming access to exact policy gradients. The first three algorithms

optimize the objective Es∼µ[V
π(s)], where µ is the starting state distribution for the algorithms.

The MDP has |S| states, |A| actions, and discount factor 0 ≤ γ < 1. The quantity D∞ :=

maxs

(
dπ

⋆
s0

(s)

µ(s)

)
is termed the distribution mismatch coefficient, where, roughly speaking, dπ

⋆

s0
(s) is

the fraction of time spent in state s when executing an optimal policy π⋆, starting from the state

s0 (see (4)). The NPG algorithm directly optimizes V π(s0) for any state s0. In contrast to the

complexities of the previous three algorithms, NPG has no dependence on the coefficient D∞, nor

does it depend on the choice of s0. Both the MDP Experts Algorithm [Even-Dar et al., 2009] and

MD-MPI algorithm [Geist et al., 2019] (see Corollary 3 of their paper) also yield guarantees for the

same update rule as NPG for the softmax parameterization, though at a worse rate. See Section 2

for further discussion.

challenge here is that the optimal policy (which is deterministic) is attained by sending the softmax

parameters to infinity.

In order to establish a finite time, convergence rate to optimality for the softmax parameteriza-

tion, we then consider a log barrier regularizer and provide an iteration complexity bound that is

polynomial in all relevant quantities. The use of our log barrier regularizer is critical to avoiding

the issue of gradients becomingly vanishingly small at suboptimal near-deterministic policies, an

issue of significant practical relevance. The log barrier regularizer can also be viewed as using a

relative entropy regularizer; here, we note the general approach of entropy based regularization

is common in practice (e.g. see [Williams and Peng, 1991, Mnih et al., 2016, Peters et al., 2010,

Abdolmaleki et al., 2018, Ahmed et al., 2019]). One notable distinction, which we discuss later, is

that our analysis is for the log barrier regularization rather than the entropy regularization.

For these aforementioned algorithms, our convergence rates depend on the optimization mea-

sure having coverage over the state space, as measured by the distribution mismatch coefficient

D∞ (see Table 1 caption). In particular, for the convergence rates shown in Table 1 (for the afore-
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mentioned algorithms), we assume that the optimization objective is the expected (discounted)

cumulative value where the initial state is sampled under some distribution, and D∞ is a measure

of the coverage of this initial distribution. Furthermore, we provide a lower bound that shows such

a dependence is unavoidable for first-order methods, even when exact gradients are available.

We then consider the Natural Policy Gradient (NPG) algorithm [Kakade, 2001] (also see

Bagnell and Schneider [2003], Peters and Schaal [2008]), which can be considered a quasi second-

order method due to the use of its particular preconditioner, and provide an iteration complexity to

achieve an ǫ-optimal policy that is at most 2
(1−γ)2ǫ

iterations, improving upon the previous related

results of [Even-Dar et al., 2009, Geist et al., 2019] (see Section 2). Note the convergence rate

has no dependence on the number of states or the number of actions, nor does it depend on the

distribution mismatch coefficient D∞. We provide a simple and concise proof for the convergence

rate analysis by extending the approach developed in [Even-Dar et al., 2009], which uses a mirror

descent style of analysis [Nemirovsky and Yudin, 1983, Cesa-Bianchi and Lugosi, 2006] and also

handles the non-concavity of the policy optimization problem.

This fast and dimension free convergence rate shows how the variable preconditioner in the

natural gradient method improves over the standard gradient ascent algorithm. The dimension free

aspect of this convergence rate is worth reflecting on, especially given the widespread use of the

natural policy gradient algorithm along with variants such as the Trust Region Policy Optimization

(TRPO) algorithm [Schulman et al., 2015]; our results may help to provide analysis of a more

general family of entropy based algorithms (see for example Neu et al. [2017]).

Function Approximation: We now summarize our results with regards to policy gradient meth-

ods in the setting where we work with a restricted policy class, which may not contain the optimal

policy. In this sense, these methods can be viewed as approximate methods. Table 2 provides a

summary along with the comparisons to some relevant approximate dynamic programming meth-

ods.

A long line of work in the function approximation setting focuses on mitigating the worst-case

“ℓ∞” guarantees that are inherent to approximate dynamic programming methods [Bertsekas and Tsitsiklis,

1996] (see the first row in Table 2). The reason to focus on average case guarantees is that it sup-

ports the applicability of supervised machine learning methods to solve the underlying approxi-

mation problem. This is because supervised learning methods, like classification and regression,

typically have bounds on the expected error under a distribution, as opposed to worst-case guaran-

tees over all possible inputs.

The existing literature largely consists of two lines of provable guarantees that attempt to miti-

gate the explicit ℓ∞ error conditions of approximate dynamic programming: those methods which

utilize a problem dependent parameter (the concentrability coefficient [Munos, 2005]) to provide

more refined dynamic programming guarantees (e.g. see Munos [2005], Szepesvári and Munos

[2005], Antos et al. [2008], Farahmand et al. [2010]) and those which work with a restricted policy

class, making incremental updates, such as Conservative Policy Iteration (CPI) [Kakade and Langford,

2002, Scherrer and Geist, 2014], Policy Search by Dynamic Programming (PSDP) [Bagnell et al.,

2004], and MD-MPI Geist et al. [2019]. Both styles of approaches give guarantees based on worst-

case density ratios, i.e. they depend on a maximum ratio between two different densities over the

state space. As discussed in[Scherrer, 2014], the assumptions in the latter class of algorithms
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are substantially weaker, in that the worst-case density ratio only depends on the state visitation

distribution of an optimal policy (also see Table 2 caption and Section 2).

With regards to function approximation, our main contribution is in providing performance

bounds that, in some cases, have milder dependence on these density ratios. We precisely quantify

an approximation/estimation error decomposition relevant for the analysis of the natural gradient

method; this decomposition is stated in terms of the compatible function approximation error

as introduced in Sutton et al. [1999]. More generally, we quantify our function approximation

results in terms of a precisely quantified transfer error notion, based on approximation error under

distribution shift. Table 2 shows a special case of our convergence rates of NPG, which is governed

by four quantities: ǫstat, ǫapprox, κ, and D∞.

Let us discuss the important special case of log-linear policies (i.e. policies that take the soft-

max of linear functions in a given feature space) where the relevant quantities are as follows: ǫstat
is a bound on the excess risk (the estimation error) in fitting linearly parameterized value functions,

which can be driven to 0 with more samples (at the usual statistical rate of O(1/
√
N) where N is

the number of samples); ǫapprox is the usual notion of average squared approximation error where

the target function may not be perfectly representable by a linear function; κ can be upper bounded

with an inverse dependence on the minimal eigenvalue of the feature covariance matrix of the fit-

ting measure (as such it can be viewed as a dimension dependent quantity but not necessarily state

dependent); and D∞ is as before.

For the realizable case, where all policies have values which are linear in the given features

(such as in linear MDP models of [Jin et al., 2019, Yang and Wang, 2019, Jiang et al., 2017]), we

have that the approximation error ǫapprox is 0. Here, our guarantees yield a fully polynomial and

sample efficient convergence guarantee, provided the condition number κ is bounded. Importantly,

there always exists a good (universal) initial measure that ensures κ is bounded by a quantity that

is only polynomial in the dimension of the features, d, as opposed to an explicit dependence on

the size of the (infinite) state space (see Remark 6.3). Such a guarantee would not be implied by

algorithms which depend on the coefficients C∞ or D∞.1

Our results are also suggestive that a broader class of incremental algorithms — such as

CPI [Kakade and Langford, 2002], PSDP [Bagnell et al., 2004], and MD-MPI Geist et al. [2019]

which make small changes to the policy from one iteration to the next — may also permit a sharper

analysis, where the dependence of worst-case density ratios can be avoided through an appropriate

approximation/estimation decomposition; this is an interesting direction for future work (a point

which we return to in Section 7). One significant advantage of NPG is that the explicit paramet-

ric policy representation in NPG (and other policy gradient methods) leads to a succinct policy

representation in comparison to CPI, PSDP, or related boosting-style methods [Scherrer and Geist,

2014], where the representation complexity of the policy of the latter class of methods grows lin-

early in the number of iterations (since these methods add one policy to the ensemble per iteration).

This representation complexity is likely why the latter class of algorithms are less widely used in

practice.

1Bounding C∞ would require a restriction on the dynamics of the MDP (see Chen and Jiang [2019] and Section 2).

Bounding D∞ would require an initial state distribution that is constructed using knowledge of π⋆, through dπ
⋆

. In

contrast, κ can be made O(d), with an initial state distribution that only depends on the geometry of the features (and

does not depend on any other properties of the MDP). See Remark 6.3.
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Algorithm
Suboptimality

after T Iterations Relevant Quantities

Approx. Value/Policy

Iteration [Bertsekas and Tsitsiklis,

1996]

ǫ∞
(1−γ)2

+ γT

(1−γ)2 ǫ∞: ℓ∞ error of values

Approx. Policy Iteration,

with concentrability

[Munos, 2005, Antos et al., 2008]

C∞ǫ1
(1−γ)2

+ γT

(1−γ)2

ǫ1: an ℓ1 average error

C∞: concentrability

(max density ratio)

Conservative Policy Iteration

[Kakade and Langford, 2002]

Related: PSDP [Bagnell et al.,

2004], MD-MPI Geist et al. [2019]

D∞ǫ1
(1−γ)2

+ 1
(1−γ)

√
T

ǫ1: an ℓ1 average error

D∞: max density ratio to

opt., D∞ ≤ C∞

Natural Policy Gradient

(Cor. 6.1 and Thm. 6.2)

√
κǫstat+D∞ǫapprox

(1−γ)3
+ 1

(1−γ)
√
T

ǫstat: excess risk

ǫapprox: approx. error

κ: a condition number

D∞: max density ratio to

opt., D∞ ≤ C∞

Table 2: Overview of Approximate Methods: The suboptimality, V ⋆(s0) − V π(s0), after T
iterations for various approximate algorithms, which use different notions of approximation error

(sample complexities are not directly considered but instead may be thought of as part of ǫ1 and

ǫstat. See Section 2 for further discussion). Order notation is used to drop constants, and we assume

|A| = 2 for ease of exposition. For approximate dynamic programming methods, the relevant

error is the worst case, ℓ∞-error in approximating a value function, e.g. ǫ∞ = maxs,a |Qπ(s, a) −
Q̂π(s, a)|, where Q̂π is what an estimation oracle returns during the course of the algorithm. The

second row (see Lemma 12 in Antos et al. [2008]) is a refinement of this approach, where ǫ1 is an

ℓ1-average error in fitting the value functions under the fitting (state) distribution µ, and, roughly,

C∞ is a worst case density ratio between the state visitation distribution of any non-stationary

policy and the fitting distribution µ. For Conservative Policy Iteration, ǫ1 is a related ℓ1-average

case fitting error with respect to a fitting distribution µ, and D∞ is as defined as before, in the

caption of Table 1 (see also [Kakade and Langford, 2002]); here, D∞ ≤ C∞ (e.g. see Scherrer

[2014]). For NPG, ǫstat and ǫapprox measure the excess risk (the regret) and approximation errors in

fitting the values. Roughly speaking, ǫstat is the excess squared loss relative to the best fit (among

an appropriately defined parametric class) under our fitting distribution (defined with respect to the

state distribution µ). Here, ǫapprox is the approximation error: the minimal possible error (in our

parametric class) under our fitting distribution. The condition number κ is a relative eigenvalue

condition between appropriately defined feature covariances with respect to the state visitation

distribution of an optimal policy, dπ
⋆

s0
, and the state fitting distribution µ. See text for further

discussion, and Section 6 for precise statements as well as a more general result not explicitly

dependent on D∞. 6



2 Related Work

We now discuss related work, roughly in the order which reflects our presentation of results in the

previous section.

For the direct policy parameterization in the tabular case, we make use of a gradient domination-

like property, namely any first-order stationary point of the policy value is approximately optimal

up to a distribution mismatch coefficient. A variant of this result also appears in Theorem 2

of Scherrer and Geist [2014], which itself can be viewed as a generalization of the approach in

Kakade and Langford [2002]. In contrast to CPI [Kakade and Langford, 2002] and the more gen-

eral boosting-based approach in Scherrer and Geist [2014], we phrase this approach as a Polyak-

like gradient domination property [Polyak, 1963] in order to directly allow for the transfer of any

advances in non-convex optimization to policy optimization in RL. More broadly, it is worth not-

ing the global convergence of policy gradients for Linear Quadratic Regulators [Fazel et al., 2018]

also goes through a similar proof approach of gradient domination.

Empirically, the recent work of Ahmed et al. [2019] studies entropy based regularization and

shows the value of regularization in policy optimization, even with exact gradients. This is related

to our use of the log barrier regularization.

For our convergence results of the natural policy gradient algorithm in the tabular setting, there

are close connections between our results and the works of Even-Dar et al. [2009], Geist et al.

[2019]. Even-Dar et al. [2009] provides provable online regret guarantees in changing MDPs uti-

lizing experts algorithms (also see Neu et al. [2010], Abbasi-Yadkori et al. [2019a]); as a special

case, their MDP Experts Algorithm is equivalent to the natural policy gradient algorithm with the

softmax policy parameterization. While the convergence result due to Even-Dar et al. [2009] was

not specifically designed for this setting, it is instructive to see what it implies due to the close con-

nections between optimization and regret [Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz et al.,

2012]. The Mirror Descent-Modified Policy Iteration (MD-MPI) algorithm [Geist et al., 2019]

with negative entropy as the Bregman divergence results is an identical algorithm as NPG for soft-

max parameterization in the tabular case; Corollary 3 [Geist et al., 2019] applies to our updates,

leading to a bound worse by a 1/(1 − γ) factor and also has logarithmic dependence on |A|. Our

proof for this case is concise and may be of independent interest. Also worth noting is the Dy-

namic Policy Programming of Azar et al. [2012], which is an actor-critic algorithm with a softmax

parameterization; this algorithm, even though not identical, comes with similar guarantees in terms

of its rate (it is weaker in terms of an additional 1/(1− γ) factor) than the NPG algorithm.

We now turn to function approximation, starting with a discussion of iterative algorithms which

make incremental updates in which the next policy is effectively constrained to be close to the pre-

vious policy, such as in CPI and PSDP [Bagnell et al., 2004]. Here, the work in Scherrer and Geist

[2014] show how CPI is part of broader family of boosting-style methods. Also, with regards to

PSDP, the work in Scherrer [2014] shows how PSDP actually enjoys an improved iteration com-

plexity over CPI, namely O(log 1/ǫopt) vs. O(1/ǫ2opt). It is worthwhile to note that both NPG and

projected gradient ascent are also both incremental algorithms.

We now discuss the approximate dynamic programming results characterized in terms of the

concentrability coefficient. Broadly we use the term approximate dynamic programming to re-

fer to fitted value iteration, fitted policy iteration and more generally generalized policy iteration
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schemes such as classification-based policy iteration as well, in addition to the classical approx-

imate value/policy iteration works. While the approximate dynamic programming results typi-

cally require ℓ∞ bounded errors, which is quite stringent, the notion of concentrability (originally

due to [Munos, 2003, 2005]) permits sharper bounds in terms of average case function approx-

imation error, provided that the concentrability coefficient is bounded (e.g. see Munos [2005],

Szepesvári and Munos [2005], Antos et al. [2008], Lazaric et al. [2016]). Chen and Jiang [2019]

provide a more detailed discussion on this quantity. Based on this problem dependent constant be-

ing bounded, Munos [2005], Szepesvári and Munos [2005], Antos et al. [2008] and Lazaric et al.

[2016] provide meaningful sample size and error bounds for approximate dynamic programming

methods, where there is a data collection policy (under which value-function fitting occurs) that

induces a concentrability coefficient. In terms of the concentrability coefficient C∞ and the “distri-

bution mismatch coefficient” D∞ in Table 2 , we have that D∞ ≤ C∞, as discussed in [Scherrer,

2014] (also see the table caption). Also, as discussed in Chen and Jiang [2019], a finite concentra-

bility coefficient is a restriction on the MDP dynamics itself, while a bounded D∞ does not require

any restrictions on the MDP dynamics. The more refined quantities defined by Farahmand et al.

[2010] (for the approximate policy iteration result) partially alleviate some of these concerns, but

their assumptions still implicitly constrain the MDP dynamics, like the finiteness of the concentra-

bility coefficient.

Assuming bounded concentrability coefficient, there are a notable set of provable average case

guarantees for the MD-MPI algorithm [Geist et al., 2019] (see also [Azar et al., 2012, Scherrer et al.,

2015]), which are stated in terms of various norms of function approximation error. MD-MPI is

a class of algorithms for approximate planning under regularized notions of optimality in MDPs.

Specifically, Geist et al. [2019] analyze a family of actor-critic style algorithms, where there are

both approximate value functions updates and approximate policy updates. As a consequence of

utilizing approximate value function updates for the critic, the guarantees of Geist et al. [2019] are

stated with dependencies on concentrability coefficients.

When dealing with function approximation, computational and statistical complexities are rele-

vant because they determine the effectiveness of approximate updates with finite samples. With re-

gards to sample complexity, the work in Szepesvári and Munos [2005], Antos et al. [2008] provide

finite sample rates (as discussed above), further generalized to actor-critic methods in Azar et al.

[2012], Scherrer et al. [2015]. In our policy optimization approach, the analysis of both compu-

tational and statistical complexities are straightforward, since we can leverage known statistical

and computational results from the stochastic approximation literature; in particular, we use the

stochastic projected gradient ascent to obtain a simple, linear time method for the critic estimation

step in the natural policy gradient algorithm.

In terms of the algorithmic updates for the function approximation setting, our development of

NPG bears similarity to the natural actor-critic algorithm Peters and Schaal [2008], for which some

asymptotic guarantees under finite concentrability coefficients are obtained in Bhatnagar et al. [2009].

While both updates seek to minimize the compatible function approximation error, we perform

streaming updates based on stochastic optimization using Monte Carlo estimates for values. In con-

trast Peters and Schaal [2008] utilize Least Squares Temporal Difference methods [Boyan, 1999]

to minimize the loss. As a consequence, their updates additionally make linear approximations to

8



the value functions in order to estimate the advantages; our approach is flexible in allowing for

wide family of smoothly differentiable policy classes (including neural policies).

Finally, we remark on some concurrent works. The work of Bhandari and Russo [2019]

provides gradient domination-like conditions under which there is (asymptotic) global conver-

gence to the optimal policy. Their results are applicable to the projected gradient ascent algo-

rithm; they are not applicable to gradient ascent with the softmax parameterization (see the dis-

cussion in Section 5 herein for the analysis challenges). Bhandari and Russo [2019] also pro-

vide global convergence results beyond MDPs. Also, Liu et al. [2019] provide an analysis of the

TRPO algorithm [Schulman et al., 2015] with neural network parameterizations, which bears re-

semblance to our natural policy gradient analysis. In particular, Liu et al. [2019] utilize ideas

from both Even-Dar et al. [2009] (with a mirror descent style of analysis) along with Cai et al.

[2019] (to handle approximation with neural networks) to provide conditions under which TRPO

returns a near optimal policy. Liu et al. [2019] do not explicitly consider the case where the pol-

icy class is not complete (i.e when there is approximation). Another related work of Shani et al.

[2019] considers the TRPO algorithm and provides theoretical guarantees in the tabular case; their

convergence rates with exact updates are O(1/
√
T ) for the (unregularized) objective function of

interest; they also provide faster rates on a modified (regularized) objective function. They do not

consider the case of infinite state spaces and function approximation. The closely related recent

papers [Abbasi-Yadkori et al., 2019a,b] also consider closely related algorithms to the Natural Pol-

icy Gradient approach studied here, in an infinite horizon, average reward setting. Specifically, the

EE-POLITEX algorithm is closely related to the Q-NPG algorithm which we study in Section 6.2,

though our approach is in the discounted setting. We adopt the name Q-NPG to capture its close

relationship with the NPG algorithm, with the main difference being the use of function approxima-

tion for the Q-function instead of advantages. We refer the reader to Section 6.2 (and Remark 6.5)

for more discussion of the technical differences between the two works.

3 Setting

A (finite) Markov Decision Process (MDP) M = (S,A, P, r, γ, ρ) is specified by: a finite state

space S; a finite action space A; a transition model P where P (s′|s, a) is the probability of tran-

sitioning into state s′ upon taking action a in state s; a reward function r : S × A → [0, 1]
where r(s, a) is the immediate reward associated with taking action a in state s; a discount factor

γ ∈ [0, 1); a starting state distribution ρ over S.

A deterministic, stationary policy π : S → A specifies a decision-making strategy in which

the agent chooses actions adaptively based on the current state, i.e., at = π(st). The agent may

also choose actions according to a stochastic policy π : S → ∆(A) (where ∆(A) is the probability

simplex overA), and, overloading notation, we write at ∼ π(·|st).
A policy induces a distribution over trajectories τ = (st, at, rt)

∞
t=0, where s0 is drawn from the

starting state distribution ρ, and, for all subsequent timesteps t, at ∼ π(·|st) and st+1 ∼ P (·|st, at).
The value function V π : S → R is defined as the discounted sum of future rewards starting at state
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s and executing π, i.e.

V π(s) := E

[ ∞∑

t=0

γtr(st, at)|π, s0 = s

]
,

where the expectation is with respect to the randomness of the trajectory τ induced by π in M .

Since we assume that r(s, a) ∈ [0, 1], we have 0 ≤ V π(s) ≤ 1
1−γ

. We overload notation and define

V π(ρ) as the expected value under the initial state distribution ρ, i.e.

V π(ρ) := Es0∼ρ[V
π(s0)].

The action-value (or Q-value) function Qπ : S × A → R and the advantage function Aπ :
S × A → R are defined as:

Qπ(s, a) = E

[ ∞∑

t=0

γtr(st, at)|π, s0 = s, a0 = a

]
, Aπ(s, a) := Qπ(s, a)− V π(s) .

The goal of the agent is to find a policy π that maximizes the expected value from the initial

state, i.e. the optimization problem the agent seeks to solve is:

max
π

V π(ρ), (1)

where the max is over all policies. The famous theorem of Bellman and Dreyfus [1959] shows

there exists a policy π⋆ which simultaneously maximizes V π(s0), for all states s0 ∈ S.

Policy Parameterizations. This work studies ascent methods for the optimization problem:

max
θ∈Θ

V πθ(ρ),

where {πθ|θ ∈ Θ} is some class of parametric (stochastic) policies. We consider a number of

different policy classes. The first two are complete in the sense that any stochastic policy can be

represented in the class. The final class may be restrictive. These classes are as follows:

• Direct parameterization: The policies are parameterized by

πθ(a|s) = θs,a, (2)

where θ ∈ ∆(A)|S|, i.e. θ is subject to θs,a ≥ 0 and
∑

a∈A θs,a = 1 for all s ∈ S and a ∈ A.

• Softmax parameterization: For unconstrained θ ∈ R
|S||A|,

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
. (3)

The softmax parameterization is also complete.

10



s1 s2

s4

s5

s3

0

0

0

0

0 r > 0

0

Figure 1: (Non-concavity example) A deter-

ministic MDP corresponding to Lemma 3.1

where V πθ(s) is not concave. Numbers on

arrows represent the rewards for each action.

s0 s1 · · · sH sH+1

a1

a1 a1
a1

a2 a2

a3

a4
a3

a4

Figure 2: (Vanishing gradient example) A deter-

ministic, chain MDP of length H + 2. We con-

sider a policy where π(a|si) = θsi,a for i =
1, 2, . . . , H . Rewards are 0 everywhere other than

r(sH+1, a1) = 1. See Proposition 4.1.

• Restricted parameterizations: We also study parametric classes {πθ|θ ∈ Θ} that may not

contain all stochastic policies. In particular, we pay close attention to both log-linear policy

classes and neural policy classes (see Section 6). Here, the best we may hope for is an

agnostic result where we do as well as the best policy in this class.

While the softmax parameterization is the more natural parametrization among the two complete

policy classes, it is also informative to consider the direct parameterization.

It is worth explicitly noting that V πθ(s) is non-concave in θ for both the direct and the softmax

parameterizations, so the standard tools of convex optimization are not applicable. For complete-

ness, we formalize this as follows (with a proof in Appendix A, along with an example in Figure 1):

Lemma 3.1. There is an MDP M (described in Figure 1) such that the optimization problem

V πθ(s) is not concave for both the direct and softmax parameterizations.

Policy gradients. In order to introduce these methods, it is useful to define the discounted state

visitation distribution dπs0 of a policy π as:

dπs0(s) := (1− γ)
∞∑

t=0

γtPrπ(st = s|s0), (4)

where Prπ(st = s|s0) is the state visitation probability that st = s, after we execute π starting at

state s0. Again, we overload notation and write:

dπρ(s) = Es0∼ρ

[
dπs0(s)

]
,

where dπρ is the discounted state visitation distribution under initial distribution ρ.

The policy gradient functional form (see e.g. Williams [1992], Sutton et al. [1999]) is then:

∇θV
πθ(s0) =

1

1− γ
Es∼d

πθ
s0
Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Qπθ(s, a)

]
. (5)

11



Furthermore, if we are working with a differentiable parameterization of πθ(·|s) that explicitly

constrains πθ(·|s) to be in the simplex, i.e. πθ ∈ ∆(A)|S| for all θ, then we also have:

∇θV
πθ(s0) =

1

1− γ
Es∼d

πθ
s0
Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Aπθ(s, a)

]
. (6)

Note the above gradient expression (Equation 6) does not hold for the direct parameterization,

while Equation 5 is valid. 2

The performance difference lemma. The following lemma is helpful throughout:

Lemma 3.2. (The performance difference lemma [Kakade and Langford, 2002]) For all policies

π, π′ and states s0,

V π(s0)− V π′

(s0) =
1

1− γ
Es∼dπs0

Ea∼π(·|s)

[
Aπ′

(s, a)
]
.

For completeness, we provide a proof in Appendix A.

The distribution mismatch coefficient. We often characterize the difficulty of the exploration

problem faced by our policy optimization algorithms when maximizing the objective V π(µ) through

the following notion of distribution mismatch coefficient.

Definition 3.1 (Distribution mismatch coefficient). Given a policy π and measures ρ, µ ∈ ∆(S),
we refer to

∥∥∥dπρ
µ

∥∥∥
∞

as the distribution mismatch coefficient of π relative to µ. Here,
dπρ
µ

denotes

componentwise division.

We often instantiate this coefficient with µ as the initial state distribution used in a policy

optimization algorithm, ρ as the distribution to measure the sub-optimality of our policy (this is the

start state distribution of interest), and where π above is often chosen to be π⋆ ∈ argmaxπ∈Π V π(ρ),
given a policy class Π.

Notation. Following convention, we use V ⋆ and Q⋆ to denote V π⋆
and Qπ⋆

respectively. For

iterative algorithms which obtain policy parameters θ(t) at iteration t, we let π(t), V (t) and A(t)

denote the corresponding quantities parameterized by θ(t), i.e. πθ(t) , V
θ(t) and Aθ(t) , respectively.

For vectors u and v, we use u
v

to denote the componentwise ratio; u ≥ v denotes a componentwise

inequality; we use the standard convention where ‖v‖2 =
√∑

i v
2
i , ‖v‖1 =

∑
i |vi|, and ‖v‖∞ =

maxi |vi|.
2This is due to

∑
a∇θπθ(a|s) = 0 not explicitly being maintained by the direct parameterization.
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4 Warmup: Constrained Tabular Parameterization

Our starting point is, arguably, the simplest first-order method: we directly take gradient ascent

updates on the policy simplex itself and then project back onto the simplex if the constraints are

violated after a gradient update. This algorithm is projected gradient ascent on the direct policy

parametrization of the MDP, where the parameters are the state-action probabilities, i.e. θs,a =
πθ(a|s) (see (2)). As noted in Lemma 3.1, V πθ(s) is non-concave in the parameters πθ. Here, we

first prove that V πθ(µ) satisfies a Polyak-like gradient domination condition [Polyak, 1963], and

this tool helps in providing convergence rates. The basic approach was also used in the analysis

of CPI [Kakade and Langford, 2002]; related gradient domination-like lemmas also appeared in

Scherrer and Geist [2014].

It is instructive to consider this special case due to the connections it makes to the non-convex

optimization literature. We also provide a lower bound that rules out algorithms whose runtime

appeals to the curvature of saddle points (e.g. [Nesterov and Polyak, 2006, Ge et al., 2015, Jin et al.,

2017]).

For the direct policy parametrization where θs,a = πθ(a|s), the gradient is:

∂V π(µ)

∂π(a|s) =
1

1− γ
dπµ(s)Q

π(s, a), (7)

using (5). In particular, for this parameterization, we may write∇πV
π(µ) instead of∇θV

πθ(µ).

4.1 Gradient Domination

Informally, we say a function f(θ) satisfies a gradient domination property if for all θ ∈ Θ,

f(θ⋆)− f(θ) = O(G(θ)),

where θ⋆ ∈ argmaxθ′∈Θ f(θ′) and where G(θ) is some suitable scalar notion of first-order station-

arity, which can be considered a measure of how large the gradient is (see [Karimi et al., 2016,

Bolte et al., 2007, Attouch et al., 2010]). Thus if one can find a θ that is (approximately) a first-

order stationary point, then the parameter θ will be near optimal (in terms of function value). Such

conditions are a standard device to establishing global convergence in non-convex optimization, as

they effectively rule out the presence of bad critical points. In other words, given such a condition,

quantifying the convergence rate for a specific algorithm, like say projected gradient ascent, will

require quantifying the rate of its convergence to a first-order stationary point, for which one can

invoke standard results from the optimization literature.

The following lemma shows that the direct policy parameterization satisfies a notion of gradient

domination. This is the basic approach used in the analysis of CPI [Kakade and Langford, 2002]; a

variant of this lemma also appears in Scherrer and Geist [2014]. We give a proof for completeness.

Even though we are interested in the value V π(ρ), it is helpful to consider the gradient with

respect to another state distribution µ ∈ ∆(S).
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Lemma 4.1 (Gradient domination). For the direct policy parameterization (as in (2)), for all state

distributions µ, ρ ∈ ∆(S), we have

V ⋆(ρ)− V π(ρ) ≤
∥∥∥∥∥
dπ

⋆

ρ

dπµ

∥∥∥∥∥
∞

max
π̄

(π̄ − π)⊤∇πV
π(µ)

≤ 1

1− γ

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥
∞

max
π̄

(π̄ − π)⊤∇πV
π(µ),

where the max is over the set of all policies, i.e. π̄ ∈ ∆(A)|S|.

Before we provide the proof, a few comments are in order with regards to the performance

measure ρ and the optimization measure µ. Subtly, note that although the gradient is with respect

to V π(µ), the final guarantee applies to all distributions ρ. The significance is that even though we

may be interested in our performance under ρ, it may be helpful to optimize under the distribution

µ. To see this, note the lemma shows that a sufficiently small gradient magnitude in the feasible

directions implies the policy is nearly optimal in terms of its value, but only if the state distribu-

tion of π, i.e. dπµ, adequately covers the state distribution of some optimal policy π⋆. Here, it is

also worth recalling the theorem of Bellman and Dreyfus [1959] which shows there exists a single

policy π⋆ that is simultaneously optimal for all starting states s0. Note that the hardness of the

exploration problem is captured through the distribution mismatch coefficient (Definition 3.1).

Proof:[of Lemma 4.1] By the performance difference lemma (Lemma 3.2),

V ⋆(ρ)− V π(ρ) =
1

1− γ

∑

s,a

dπ
⋆

ρ (s)π⋆(a|s)Aπ(s, a)

≤ 1

1− γ

∑

s,a

dπ
⋆

ρ (s)max
ā

Aπ(s, ā)

=
1

1− γ

∑

s

dπ
⋆

ρ (s)

dπµ(s)
· dπµ(s)max

ā
Aπ(s, ā)

≤ 1

1− γ

(
max

s

dπ
⋆

ρ (s)

dπµ(s)

)∑

s

dπµ(s)max
ā

Aπ(s, ā), (8)

where the last inequality follows since maxā A
π(s, ā) ≥ 0 for all states s and policies π. We wish
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to upper bound (8). We then have:

∑

s

dπµ(s)

1− γ
max

ā
Aπ(s, ā) = max

π̄∈∆(A)|S|

∑

s,a

dπµ(s)

1− γ
π̄(a|s)Aπ(s, a)

= max
π̄∈∆(A)|S|

∑

s,a

dπµ(s)

1− γ
(π̄(a|s)− π(a|s))Aπ(s, a)

= max
π̄∈∆(A)|S|

∑

s,a

dπµ(s)

1− γ
(π̄(a|s)− π(a|s))Qπ(s, a)

= max
π̄∈∆(A)|S|

(π̄ − π)⊤∇πV
π(µ)

where the first step follows since maxπ̄ is attained at an action which maximizesAπ(s, ·) (per state);

the second step follows as
∑

a π(a|s)Aπ(s, a) = 0; the third step uses
∑

a(π̄(a|s)− π(a|s))V π(s) = 0
for all s; and the final step follows from the gradient expression (see (7)). Using this in (8),

V ⋆(ρ)− V π(ρ) ≤
∥∥∥∥∥
dπ

⋆

ρ

dπµ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S|

(π̄ − π)⊤∇πV
π(µ)

≤ 1

1− γ

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥
∞

max
π̄∈∆(A)|S|

(π̄ − π)⊤∇πV
π(µ).

where the last step follows due to maxπ̄∈∆(A)|S| (π̄ − π)⊤∇πV
π(µ) ≥ 0 for any policy π and

dπµ(s) ≥ (1− γ)µ(s) (see (4)).

In a sense, the use of an appropriate µ circumvents the issues of strategic exploration. It is

natural to ask whether this additional term is necessary, a question which we return to. First, we

provide a convergence rate for the projected gradient ascent algorithm.

4.2 Convergence Rates for Projected Gradient Ascent

Using this notion of gradient domination, we now give an iteration complexity bound for projected

gradient ascent over the space of stochastic policies, i.e. over ∆(A)|S|. The projected gradient

ascent algorithm updates

π(t+1) = P∆(A)|S|(π(t) + η∇πV
(t)(µ)), (9)

where P∆(A)|S| is the projection onto ∆(A)|S| in the Euclidean norm.

Theorem 4.1. The projected gradient ascent algorithm (9) on V π(µ) with stepsize η = (1−γ)3

2γ|A|
satisfies for all distributions ρ ∈ ∆(S),

min
t<T

{
V ⋆(ρ)− V (t)(ρ)

}
≤ ǫ whenever T >

64γ|S||A|
(1− γ)6ǫ2

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥

2

∞

.
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A proof is provided in Appendix B.1. The proof first invokes a standard iteration complexity

result of projected gradient ascent to show that the gradient magnitude with respect to all feasible

directions is small. More concretely, we show the policy is ǫ-stationary3, that is, for all πθ + δ ∈
∆(A)|S| and ‖δ‖2 ≤ 1, δ⊤∇πV

πθ(µ) ≤ ǫ. We then use Lemma 4.1 to complete the proof.

Note that the guarantee we provide is for the best policy found over the T rounds, which we

obtain from a bound on the average norm of the gradients. This type of a guarantee is standard in

the non-convex optimization literature, where an average regret bound cannot be used to extract a

single good solution, e.g. by averaging. In the context of policy optimization, this is not a serious

limitation as we collect on-policy trajectories for each policy in doing sample-based gradient esti-

mation, and these samples can be also used to estimate the policy’s value. Note that the evaluation

step is not required for every policy, and can also happen on a schedule, though we still need to

evaluate O(T ) policies to obtain the convergence rates described here.

4.3 A Lower Bound: Vanishing Gradients and Saddle Points

To understand the necessity of the distribution mismatch coefficient in Lemma 4.1 and Theo-

rem 4.1, let us first give an informal argument that some condition on the state distribution of π, or

equivalently µ, is necessary for stationarity to imply optimality. For example, in a sparse-reward

MDP (where the agent is only rewarded upon visiting some small set of states), a policy that does

not visit any rewarding states will have zero gradient, even though it is arbitrarily suboptimal in

terms of values. Below, we give a more quantitative version of this intuition, which demonstrates

that even if π chooses all actions with reasonable probabilities (and hence the agent will visit all

states if the MDP is connected), then there is an MDP where a large fraction of the policies π have

vanishingly small gradients, and yet these policies are highly suboptimal in terms of their value.

Concretely, consider the chain MDP of length H + 2 shown in Figure 2. The starting state

of interest is state s0 and the discount factor γ = H/(H + 1). Suppose we work with the direct

parameterization, where πθ(a|s) = θs,a for a = a1, a2, a3 and πθ(a4|s) = 1 − θs,a1 − θs,a2 − θs,a3 .

Note we do not over-parameterize the policy. For this MDP and policy structure, if we were to

initialize the probabilities over actions, say deterministically, then there is an MDP (obtained by

permuting the actions) where all the probabilities for a1 will be less than 1/4.

The following result not only shows that the gradient is exponentially small in H , it also shows

that many higher order derivatives, up to O(H/ logH), are also exponentially small in H .

Proposition 4.1 (Vanishing gradients at suboptimal parameters). Consider the chain MDP of Fig-

ure 2, with H + 2 states, γ = H/(H + 1), and with the direct policy parameterization (with 3|S|
parameters, as described in the text above). Suppose θ is such that 0 < θ < 1 (componentwise)

and θs,a1 < 1/4 (for all states s). For all k ≤ H
40 log(2H)

− 1, we have ‖∇k
θV

πθ(s0)‖ ≤ (1/3)H/4,

where ∇k
θV

πθ(s0) is a tensor of the kth order derivatives of V πθ(s0) and the norm is the operator

norm of the tensor.4 Furthermore, V ⋆(s0)− V πθ(s0) ≥ (H + 1)/8− (H + 1)2/3H .

3See Appendix B.1 for discussion on this definition.
4The operator norm of a kth-order tensor J ∈ R

d⊗k

is defined as supu1,...,uk∈Rd : ‖ui‖2=1〈J, u1 ⊗ . . .⊗ ud〉.
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This lemma also suggests that results in the non-convex optimization literature, on escaping

from saddle points, e.g. [Nesterov and Polyak, 2006, Ge et al., 2015, Jin et al., 2017], do not di-

rectly imply global convergence due to that the higher order derivatives are small.

Remark 4.1. (Exact vs. Approximate Gradients) The chain MDP of Figure 2, is a common ex-

ample where sample based estimates of gradients will be 0 under random exploration strategies;

there is an exponentially small in H chance of hitting the goal state under a random exploration

strategy. Note that this lemma is with regards to exact gradients. This suggests that even with

exact computations (along with using exact higher order derivatives) we might expect numerical

instabilities.

Remark 4.2. (Comparison with the upper bound) The lower bound does not contradict the upper

bound of Theorem 4.1 (where a small gradient is turned into a small policy suboptimality bound),

as the distribution mismatch coefficient, as defined in Definition 3.1, could be infinite in the chain

MDP of Figure 2, since the start-state distribution is concentrated on one state only. More generally,

for any policy with θs,a1 < 1/4 in all states s,

∥∥∥∥
dπ

⋆
ρ

d
πθ
ρ

∥∥∥∥
∞

= Ω(4H).

Remark 4.3. (Comparison with information-theoretic lower bounds) The lower bound here is not

information theoretic, in that it does not present a hard problem instance for all algorithms. Indeed,

exploration algorithms for tabular MDPs starting from E3 [Kearns and Singh, 2002], RMAX [Brafman and Tennenholtz,

2003] and several subsequent works yield polynomial sample complexities for the chain MDP.

Proposition 4.1 should be interpreted as a hardness result for the specific class of policy gradient

like approaches that search for a policy with a small policy gradient, as these methods will find the

initial parameters to be valid in terms of the size of (several orders of) gradients. In particular, it

precludes any meaningful claims on global optimality, based just on the size of the policy gradients,

without additional assumptions as discussed in the previous remark.

The proof is provided in Appendix B.2. The lemma illustrates that lack of good exploration can

indeed be detrimental in policy gradient algorithms, since the gradient can be small either due to π
being near-optimal, or, simply because π does not visit advantageous states often enough. In this

sense, it also demonstrates the necessity of the distribution mismatch coefficient in Lemma 4.1.

5 The Softmax Tabular Parameterization

We now consider the softmax policy parameterization (3). Here, we still have a non-concave

optimization problem in general, as shown in Lemma 3.1, though we do show that global optimality

can be reached under certain regularity conditions. From a practical perspective, the softmax

parameterization of policies is preferable to the direct parameterization, since the parameters θ
are unconstrained and standard unconstrained optimization algorithms can be employed. However,

optimization over this policy class creates other challenges as we study in this section, as the

optimal policy (which is deterministic) is attained by sending the parameters to infinity.

We study three algorithms for this problem. The first performs direct policy gradient ascent

on the objective without modification, while the second adds a log barrier regularizer to keep the
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parameters from becoming too large, as a means to ensure adequate exploration. Finally, we study

the natural policy gradient algorithm and establish a global optimality result with no dependence

on the distribution mismatch coefficient or dimension-dependent factors.

For the softmax parameterization, the gradient takes the form:

∂V πθ(µ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a) (10)

(see Lemma C.1 for a proof).

5.1 Asymptotic Convergence, without Regularization

Due to the exponential scaling with the parameters θ in the softmax parameterization, any policy

that is nearly deterministic will have gradients close to 0. In spite of this difficulty, we provide a

positive result that gradient ascent asymptotically converges to the global optimum for the softmax

parameterization.

The update rule for gradient ascent is:

θ(t+1) = θ(t) + η∇θV
(t)(µ). (11)

Theorem 5.1 (Global convergence for softmax parameterization). Assume we follow the gradient

ascent update rule as specified in Equation (11) and that the distribution µ is strictly positive i.e.

µ(s) > 0 for all states s. Suppose η ≤ (1−γ)3

8
, then we have that for all states s, V (t)(s) → V ⋆(s)

as t→∞.

Remark 5.1. (Strict positivity of µ and exploration) Theorem 5.1 assumed that optimization dis-

tribution µ was strictly positive, i.e. µ(s) > 0 for all states s. We leave it is an open question of

whether or not gradient ascent will globally converge if this condition is not met. The concern is

that if this condition is not met, then gradient ascent may not globally converge due to that dπθ
µ (s)

effectively scales down the learning rate for the parameters associated with state s (see (10)).

The complete proof is provided in the Appendix C.1. We now discuss the subtleties in the proof

and show why the softmax parameterization precludes a direct application of the gradient domina-

tion lemma. In order to utilize the gradient domination property (in Lemma 4.1), we would desire

to show that: ∇πV
π(µ)→ 0. However, using the functional form of the softmax parameterization

(see Lemma C.1) and (7), we have that:

∂V πθ(µ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a) = πθ(a|s)

∂V πθ(µ)

∂πθ(a|s)
.

Hence, we see that even if∇θV
πθ(µ)→ 0, we are not guaranteed that∇πV

πθ(µ)→ 0.

We now briefly discuss the main technical challenges in the proof. The proof first shows that

the sequence V (t)(s) is monotone increasing pointwise, i.e. for every state s, V (t+1)(s) ≥ V (t)(s)
(Lemma C.2). This implies the existence of a limit V (∞)(s) by the monotone convergence theorem
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(Lemma C.3). Based on the limiting quantities V (∞)(s) and Q(∞)(s, a), which we show exist,

define the following limiting sets for each state s:

Is0 := {a|Q(∞)(s, a) = V (∞)(s)}
Is+ := {a|Q(∞)(s, a) > V (∞)(s)}
Is− := {a|Q(∞)(s, a) < V (∞)(s)} .

The challenge is to then show that, for all states s, the set Is+ is the empty set, which would immedi-

ately imply V (∞)(s) = V ⋆(s). The proof proceeds by contradiction, assuming that Is+ is non-empty.

Using that Is+ is non-empty and that the gradient tends to zero in the limit, i.e. ∇θV
πθ(µ) → 0,

we have that for all a ∈ Is+, π(t)(a|s) → 0 (see (10)). This, along with the functional form of the

softmax parameterization, implies that there must be divergence (in magnitude) among the set of

parameters associated with some action a at state s, i.e. that maxa∈A |θ(t)s,a| → ∞. The primary

technical challenge in the proof is to then use this divergence, along with the dynamics of gradient

ascent, to show that Is+ is empty via a contradiction.

We leave it as a question for future work as to characterizing the convergence rate, which we

conjecture is exponentially slow in some of the relevant quantities, such as in terms of the size of

state space. Here, we turn to a regularization based approach to ensure convergence at a polynomial

rate in all relevant quantities.

5.2 Polynomial Convergence with Log Barrier Regularization

Due to the exponential scaling with the parameters θ, policies can rapidly become near deter-

ministic, when optimizing under the softmax parameterization, which can result in slow conver-

gence. Indeed a key challenge in the asymptotic analysis in the previous section was to handle

the growth of the absolute values of parameters as they tend to infinity. A common practical

remedy for this is to use entropy-based regularization to keep the probabilities from getting too

small [Williams and Peng, 1991, Mnih et al., 2016], and we study gradient ascent on a similarly

regularized objective in this section. Recall that the relative-entropy for distributions p and q is

defined as: KL(p, q) := Ex∼p[− log q(x)/p(x)]. Denote the uniform distribution over a set X by

UnifX , and define the following log barrier regularized objective as:

Lλ(θ) := V πθ(µ)− λEs∼UnifS

[
KL(UnifA, πθ(·|s))

]

= V πθ(µ) +
λ

|S| |A|
∑

s,a

log πθ(a|s) + λ log |A| , (12)

where λ is a regularization parameter. The constant (i.e. the last term) is not relevant with regards

to optimization. This regularizer is different from the more commonly utilized entropy regularizer

as in Mnih et al. [2016], a point which we return to in Remark 5.2.

The policy gradient ascent updates for Lλ(θ) are given by:

θ(t+1) = θ(t) + η∇θLλ(θ
(t)). (13)
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Our next theorem shows that approximate first-order stationary points of the entropy-regularized

objective are approximately globally optimal, provided the regularization is sufficiently small.

Theorem 5.2. (Log barrier regularization) Suppose θ is such that:

‖∇θLλ(θ)‖2 ≤ ǫopt

and ǫopt ≤ λ/(2|S| |A|). Then we have that for all starting state distributions ρ:

V πθ(ρ) ≥ V ⋆(ρ)− 2λ

1− γ

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥
∞

.

Proof: The proof consists of showing that maxaA
πθ(s, a) ≤ 2λ/(µ(s)|S|) for all states. To

see that this is sufficient, observe that by the performance difference lemma (Lemma 3.2),

V ⋆(ρ)− V πθ(ρ) =
1

1− γ

∑

s,a

dπ
⋆

ρ (s)π⋆(a|s)Aπθ(s, a)

≤ 1

1− γ

∑

s

dπ
⋆

ρ (s)max
a∈A

Aπθ(s, a)

≤ 1

1− γ

∑

s

2dπ
⋆

ρ (s)λ/(µ(s)|S|)

≤ 2λ

1− γ
max

s

(
dπ

⋆

ρ (s)

µ(s)

)
.

which would then complete the proof.

We now proceed to show that maxaA
πθ(s, a) ≤ 2λ/(µ(s)|S|). For this, it suffices to bound

Aπθ(s, a) for any state-action pair s, a where Aπθ(s, a) ≥ 0 else the claim is trivially true. Con-

sider an (s, a) pair such that Aπθ(s, a) > 0. Using the policy gradient expression for the softmax

parameterization (see Lemma C.1),

∂Lλ(θ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a) +

λ

|S|

(
1

|A| − πθ(a|s)
)

. (14)

The gradient norm assumption ‖∇θLλ(θ)‖2 ≤ ǫopt implies that:

ǫopt ≥
∂Lλ(θ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a) +

λ

|S|

(
1

|A| − πθ(a|s)
)

≥ λ

|S|

(
1

|A| − πθ(a|s)
)
,

where we have used Aπθ(s, a) ≥ 0. Rearranging and using our assumption ǫopt ≤ λ/(2|S| |A|),

πθ(a|s) ≥
1

|A| −
ǫopt|S|
λ
≥ 1

2|A| .
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Solving for Aπθ(s, a) in (14), we have:

Aπθ(s, a) =
1− γ

dπθ
µ (s)

(
1

πθ(a|s)
∂Lλ(θ)

∂θs,a
+

λ

|S|

(
1− 1

πθ(a|s)|A|

))

≤ 1− γ

dπθ
µ (s)

(
2|A|ǫopt +

λ

|S|

)

≤ 2
1− γ

dπθ
µ (s)

λ

|S|
≤ 2λ/(µ(s)|S|) ,

where the penultimate step uses ǫopt ≤ λ/(2|S| |A|) and the final step uses dπθ
µ (s) ≥ (1 − γ)µ(s).

This completes the proof.

By combining the above theorem with standard results on the convergence of gradient ascent

(to first order stationary points), we obtain the following corollary.

Corollary 5.1. (Iteration complexity with log barrier regularization) Let βλ := 8γ
(1−γ)3

+ 2λ
|S| . Start-

ing from any initial θ(0), consider the updates (13) with λ = ǫ(1−γ)

2

∥∥∥∥
dπ

⋆
ρ
µ

∥∥∥∥
∞

and η = 1/βλ. Then for all

starting state distributions ρ, we have

min
t<T

{
V ⋆(ρ)− V (t)(ρ)

}
≤ ǫ whenever T ≥ 320|S|2|A|2

(1− γ)6 ǫ2

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥

2

∞

.

See Appendix C.2 for the proof. The corollary shows the importance of balancing how the

regularization parameter λ is set relative to the desired accuracy ǫ, as well as the importance of the

initial distribution µ to obtain global optimality.

Remark 5.2. (Entropy vs. log barrier regularization) The more commonly considered regular-

izer is the entropy [Mnih et al., 2016] (also see Ahmed et al. [2019] for a more detailed empirical

investigation), where the regularizer would be:

1

|S|
∑

s

H(πθ(·|s)) =
1

|S|
∑

s

∑

a

−πθ(a|s) log πθ(a|s).

Note the entropy is far less aggressive in penalizing small probabilities, in comparison to the log

barrier, which is equivalent to the relative entropy. In particular, the entropy regularizer is always

bounded between 0 and log |A|, while the relative entropy (against the uniform distribution over

actions), is bounded between 0 and infinity, where it tends to infinity as probabilities tend to 0. We

leave it is an open question if a polynomial convergence rate 5 is achievable with the more common

entropy regularizer; our polynomial convergence rate using the KL regularizer crucially relies on

the aggressive nature in which the relative entropy prevents small probabilities (the proof shows

that any action, with a positive advantage, has a significant probability for any near-stationary

policy of the regularized objective).

5Here, ideally we would like to be poly in |S|, |A|, 1/(1−γ), 1/ǫ, and the distribution mismatch coefficient, which

we conjecture may not be possible.
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5.3 Dimension-free Convergence of Natural Policy Gradient Ascent

We now show the Natural Policy Gradient algorithm, with the softmax parameterization (3), ob-

tains an improved iteration complexity. The NPG algorithm defines a Fisher information matrix

(induced by π), and performs gradient updates in the geometry induced by this matrix as follows:

Fρ(θ) = Es∼d
πθ
ρ
Ea∼πθ(·|s)

[
∇θ log πθ(a|s)

(
∇θ log πθ(a|s)

)⊤]

θ(t+1) = θ(t) + ηFρ(θ
(t))†∇θV

(t)(ρ), (15)

where M † denotes the Moore-Penrose pseudoinverse of the matrix M . Throughout this section, we

restrict to using the initial state distribution ρ ∈ ∆(S) in our update rule in (15) (so our optimization

measure µ and the performance measure ρ are identical). Also, we restrict attention to states s ∈ S
reachable from ρ, since, without loss of generality, we can exclude states that are not reachable

under this start state distribution6.

We leverage a particularly convenient form the update takes for the softmax parameterization

(see Kakade [2001]). For completeness, we provide a proof in Appendix C.3.

Lemma 5.1. (NPG as soft policy iteration) For the softmax parameterization (3), the NPG up-

dates (15) take the form:

θ(t+1) = θ(t) +
η

1− γ
A(t) and π(t+1)(a|s) = π(t)(a|s)exp(ηA

(t)(s, a)/(1− γ))

Zt(s)
,

where Zt(s) =
∑

a∈A π(t)(a|s) exp(ηA(t)(s, a)/(1− γ)).

The updates take a strikingly simple form in this special case; they are identical to the classical

multiplicative weights updates [Freund and Schapire, 1997, Cesa-Bianchi and Lugosi, 2006] for

online linear optimization over the probability simplex, where the linear functions are specified by

the advantage function of the current policy at each iteration. Notably, there is no dependence on

the state distribution d
(t)
ρ , since the pseudoinverse of the Fisher information cancels out the effect of

the state distribution in NPG. We now provide a dimension free convergence rate of this algorithm.

Theorem 5.3 (Global convergence for NPG). Suppose we run the NPG updates (15) using ρ ∈
∆(S) and with θ(0) = 0. Fix η > 0. For all T > 0, we have:

V (T )(ρ) ≥ V ∗(ρ)− log |A|
ηT

− 1

(1− γ)2T
.

In particular, setting η ≥ (1 − γ)2 log |A|, we see that NPG finds an ǫ-optimal policy in a

number of iterations that is at most:

T ≤ 2

(1− γ)2ǫ
,

6Specifically, we restrict the MDP to the set of states {s ∈ S : ∃π such that dπρ (s) > 0}.
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which has no dependence on the number of states or actions, despite the non-concavity of the

underlying optimization problem.

The proof strategy we take borrows ideas from the online regret framework in changing MDPs

(in [Even-Dar et al., 2009]); here, we provide a faster rate of convergence than the analysis implied

by Even-Dar et al. [2009] or by Geist et al. [2019]. We also note that while this proof is obtained

for the NPG updates, it is known in the literature that in the limit of small stepsizes, NPG and TRPO

updates are closely related (e.g. see Schulman et al. [2015], Neu et al. [2017], Rajeswaran et al.

[2017]).

First, the following improvement lemma is helpful:

Lemma 5.2 (Improvement lower bound for NPG). For the iterates π(t) generated by the NPG

updates (15), we have for all starting state distributions µ

V (t+1)(µ)− V (t)(µ) ≥ (1− γ)

η
Es∼µ logZt(s) ≥ 0.

Proof: First, let us show that logZt(s) ≥ 0. To see this, observe:

logZt(s) = log
∑

a

π(t)(a|s) exp(ηA(t)(s, a)/(1− γ))

≥
∑

a

π(t)(a|s) log exp(ηA(t)(s, a)/(1− γ)) =
η

1− γ

∑

a

π(t)(a|s)A(t)(s, a) = 0.

where the inequality follows by Jensen’s inequality on the concave function log x and the final

equality uses
∑

a π
(t)(a|s)A(t)(s, a) = 0. Using d(t+1) as shorthand for d

(t+1)
µ , the performance

difference lemma implies:

V (t+1)(µ)− V (t)(µ) =
1

1− γ
Es∼d(t+1)

∑

a

π(t+1)(a|s)A(t)(s, a)

=
1

η
Es∼d(t+1)

∑

a

π(t+1)(a|s) log π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
Es∼d(t+1)KL(π(t+1)

s ||π(t)
s ) +

1

η
Es∼d(t+1) logZt(s)

≥ 1

η
Es∼d(t+1) logZt(s) ≥

1− γ

η
Es∼µ logZt(s),

where the last step uses that d(t+1) = d
(t+1)
µ ≥ (1 − γ)µ, componentwise (by (4)), and that

logZt(s) ≥ 0.

With this lemma, we now prove Theorem 5.3.

Proof:[of Theorem 5.3] Since ρ is fixed, we use d⋆ as shorthand for dπ
⋆

ρ ; we also use πs as
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shorthand for the vector of π(·|s). By the performance difference lemma (Lemma 3.2),

V π⋆

(ρ)− V (t)(ρ) =
1

1− γ
Es∼d⋆

∑

a

π⋆(a|s)A(t)(s, a)

=
1

η
Es∼d⋆

∑

a

π⋆(a|s) log π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
Es∼d⋆

(
KL(π⋆

s ||π(t)
s )−KL(π⋆

s ||π(t+1)
s ) +

∑

a

π∗(a|s) logZt(s)

)

=
1

η
Es∼d⋆

(
KL(π⋆

s ||π(t)
s )−KL(π⋆

s ||π(t+1)
s ) + logZt(s)

)
,

where we have used the closed form of our updates from Lemma 5.1 in the second step.

By applying Lemma 5.2 with d⋆ as the starting state distribution, we have:

1

η
Es∼d⋆ logZt(s) ≤

1

1− γ

(
V (t+1)(d⋆)− V (t)(d⋆)

)

which gives us a bound on Es∼d⋆ logZt(s).
Using the above equation and that V (t+1)(ρ) ≥ V (t)(ρ) (as V (t+1)(s) ≥ V (t)(s) for all states s

by Lemma 5.2), we have:

V π⋆

(ρ)− V (T−1)(ρ) ≤ 1

T

T−1∑

t=0

(V π⋆

(ρ)− V (t)(ρ))

≤ 1

ηT

T−1∑

t=0

Es∼d⋆(KL(π⋆
s ||π(t)

s )−KL(π⋆
s ||π(t+1)

s )) +
1

ηT

T−1∑

t=0

Es∼d⋆ logZt(s)

≤ Es∼d⋆KL(π⋆
s ||π(0))

ηT
+

1

(1− γ)T

T−1∑

t=0

(
V (t+1)(d⋆)− V (t)(d⋆)

)

=
Es∼d⋆KL(π⋆

s ||π(0))

ηT
+

V (T )(d⋆)− V (0)(d⋆)

(1− γ)T

≤ log |A|
ηT

+
1

(1− γ)2T
.

The proof is completed using that V (T )(ρ) ≥ V (T−1)(ρ).

6 Function Approximation and Distribution Shift

We now analyze the case of using parametric policy classes:

Π = {πθ | θ ∈ R
d},
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where Π may not contain all stochastic policies (and it may not even contain an optimal policy).

In contrast with the tabular results in the previous sections, the policy classes that we are often

interested in are not fully expressive, e.g. d≪ |S||A| (indeed |S| or |A| need not even be finite for

the results in this section); in this sense, we are in the regime of function approximation.

We focus on obtaining agnostic results, where we seek to do as well as the best policy in this

class (or as well as some other comparator policy). While we are interested in a solution to the

(unconstrained) policy optimization problem

max
θ∈Rd

V πθ(ρ),

(for a given initial distribution ρ), we will see that optimization with respect to a different distribu-

tion will be helpful, just as in the tabular case,

We will consider variants of the NPG update rule (15):

θ ← θ + ηFρ(θ)
†∇θV

θ(ρ) . (16)

Our analysis will leverage a close connection between the NPG update rule (15) with the notion of

compatible function approximation [Sutton et al., 1999], as formalized in Kakade [2001]. Specifi-

cally, it can be easily seen that:

Fρ(θ)
†∇θV

θ(ρ) =
1

1− γ
w⋆, (17)

where w⋆ is a minimizer of the following regression problem:

w⋆ ∈ argminw Es∼d
πθ
ρ ,a∼πθ(·|s)

[
(w⊤∇θ log πθ(·|s)−Aπθ(s, a))2

]
.

The above is a straightforward consequence of the first order optimality conditions (see (50)).

The above regression problem can be viewed as “compatible” function approximation: we are

approximating Aπθ(s, a) using the ∇θ log πθ(·|s) as features. We also consider a variant of the

above update rule, Q-NPG, where instead of using advantages in the above regression we use the

Q-values.

This viewpoint provides a methodology for approximate updates, where we can solve the rel-

evant regression problems with samples. Our main results establish the effectiveness of NPG up-

dates where there is error both due to statistical estimation (where we may not use exact gradients)

and approximation (due to using a parameterized function class); in particular, we provide a novel

estimation/approximation decomposition relevant for the NPG algorithm. For these algorithms, we

will first consider log linear policies classes (as a special case) and then move on to more general

policy classes (such as neural policy classes). Finally, it is worth remarking that the results herein

provide one of the first provable approximation guarantees where the error conditions required do

not have explicit worst case dependencies over the state space.

6.1 NPG and Q-NPG Examples

In practice, the most common policy classes are of the form:

Π =

{
πθ(a|s) =

exp
(
fθ(s, a)

)
∑

a′∈A exp
(
fθ(s, a′)

)
∣∣∣∣ θ ∈ R

d

}
, (18)
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where fθ is a differentiable function. For example, the tabular softmax policy class is one where

fθ(s, a) = θs,a. Typically, fθ is either a linear function or a neural network. Let us consider the

NPG algorithm, and a variant Q-NPG, in each of these two cases.

6.1.1 Log-linear Policy Classes and Soft Policy Iteration

For any state-action pair (s, a), suppose we have a feature mapping φs,a ∈ R
d. Each policy in the

log-linear policy class is of the form:

πθ(a|s) =
exp(θ · φs,a)∑

a′∈A exp(θ · φs,a′)
,

with θ ∈ R
d. Here, we can take fθ(s, a) = θ · φs,a.

With regards to compatible function approximation for the log-linear policy class, we have:

∇θ log πθ(a|s) = φ
θ

s,a,where φ
θ

s,a = φs,a − Ea′∼πθ(·|s)[φs,a′],

that is, φ
θ

s,a is the centered version of φs,a. With some abuse of notation, we accordingly also define

φ̄π for any policy π. Here, using (17), the NPG update rule (16) is equivalent to:

NPG: θ ← θ + ηw⋆, w⋆ ∈ argminw Es∼d
πθ
ρ ,a∼πθ(·|s)

[(
Aπθ(s, a)− w · φ θ

s,a

)2]
.

(We have rescaled the learning rate η in comparison to (16)). Note that we recompute w⋆ for

every update of θ. Here, the compatible function approximation error measures the expressivity of

our parameterization in how well linear functions of the parameterization can capture the policy’s

advantage function.

We also consider a variant of the NPG update rule (16), termed Q-NPG, where:

Q-NPG: θ ← θ + ηw⋆, w⋆ ∈ argminw Es∼d
πθ
ρ ,a∼πθ(·|s)

[(
Qπθ(s, a)− w · φs,a

)2]
.

Note we do not center the features for Q-NPG; observe that Qπ(s, a) is also not 0 in expectation

under π(·|s), unlike the advantage function.

Remark 6.1. (NPG/Q-NPG and Soft-Policy Iteration) We now see how we can view both NPG

and Q-NPG as an incremental (soft) version of policy iteration, just as in Lemma 5.1 for the tabular

case. Rather than writing the update rule in terms of the parameter θ, we can write an equivalent

update rule directly in terms of the (log-linear) policy π:

NPG: π(a|s)← π(a|s) exp(w⋆ ·φs,a)/Zs, w⋆ ∈ argminw Es∼dπρ ,a∼π(·|s)

[(
Aπ(s, a)−w ·φ π

s,a

)2]
,

where Zs is normalization constant. While the policy update uses the original features φ instead of

φ
π
, whereas the quadratic error minimization is terms of the centered features φ

π
, this distinction

is not relevant due to that we may also instead use φ
π

(in the policy update) which would result in

an equivalent update; the normalization makes the update invariant to (constant) translations of the

features. Similarly, an equivalent update for Q-NPG, where we update π directly rather than θ, is:

Q-NPG: π(a|s)← π(a|s) exp(w⋆·φs,a)/Zs, w⋆ ∈ argminw Es∼dπρ ,a∼π(·|s)

[(
Qπ(s, a)−w·φs,a

)2]
.
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Remark 6.2. (On the equivalence of NPG and Q-NPG) If it is the case that the compatible function

approximation error is 0, then it straightforward to verify that the NPG and Q-NPG are equivalent

algorithms, in that their corresponding policy updates will be equivalent to each other.

6.1.2 Neural Policy Classes

Now suppose fθ(s, a) is a neural network parameterized by θ ∈ R
d, where the policy class Π is of

form in (18). Observe:

∇θ log πθ(a|s) = gθ(s, a),where gθ(s, a) = ∇θfθ(s, a)− Ea′∼πθ(·|s)[∇θfθ(s, a
′)],

and, using (17), the NPG update rule (16) is equivalent to:

NPG: θ ← θ + ηw⋆, w⋆ ∈ argminw Es∼d
πθ
ρ ,a∼πθ(·|s)

[(
Aπθ(s, a)− w · gθ(s, a)

)2]

(Again, we have rescaled the learning rate η in comparison to (16)).

The Q-NPG variant of this update rule is:

Q-NPG: θ ← θ + ηw⋆, w⋆ ∈ argminw Es∼d
πθ
ρ ,a∼πθ(·|s)

[(
Qπθ(s, a)− w · ∇θfθ(s, a)

)2]
.

6.2 Q-NPG: Performance Bounds for Log-Linear Policies

For a state-action distribution υ, define:

L(w; θ, υ) := Es,a∼υ

[(
Qπθ(s, a)− w · φs,a

)2
]
.

The iterates of the Q-NPG algorithm can be viewed as minimizing this loss under some (changing)

distribution υ.

We now specify an approximate version of Q-NPG. It is helpful to consider a slightly more

general version of the algorithm in the previous section, where instead of optimizing under a start-

ing state distribution ρ, we have a different starting state-action distribution ν. Analogous to the

definition of the state visitation measure, dπµ, we can define a visitation measure over states and

actions induced by following π after s0, a0 ∼ ν. We overload notation using dπν to also refer to the

state-action visitation measure; precisely,

dπν (s, a) := (1− γ)Es0,a0∼ν

∞∑

t=0

γtPrπ(st = s, at = a|s0, a0) (19)

where Prπ(st = s, at = a|s0, a0) is the probability that st = s and at = a, after starting at

state s0, taking action a0, and following π thereafter. While we overload notation for visitation

distributions (dπµ(s) and dπν (s, a)) for notational convenience, note that the state-action measure dπν
uses the subscript ν, which is a state-action measure.
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Q-NPG will be defined with respect to the on-policy state action measure starting with s0, a0 ∼
ν. As per our convention, we define

d(t) := dπ
(t)

ν .

The approximate version of this algorithm is:

Approx. Q-NPG: θ(t+1) = θ(t) + ηw(t), w(t) ≈ argmin‖w‖2≤W L(w; θ(t), d(t)), (20)

where the above update rule also permits us to constrain the norm of the update direction w(t)

(alternatively, we could use ℓ2 regularization as is also common in practice). The exact minimizer

is denoted as:

w(t)
⋆ ∈ argmin‖w‖2≤W L(w; θ(t), d(t)).

Note that w
(t)
⋆ depends on the current parameter θ(t).

Our analysis will take into account both the excess risk (often also referred to as estimation

error) and the transfer error. Here, the excess risk will be due to that w(t) may not be equal w
(t)
⋆ ,

and the approximation error will be due to that even the best linear fit using w
(t)
⋆ may not perfectly

match the Q-values, i.e. L(w
(t)
⋆ ; θ(t); d(t)) is unlikely to be 0 in practical applications.

We now formalize these concepts in the following assumption:

Assumption 6.1 (Estimation/Transfer errors). Fix a state distribution ρ; a state-action distribution

ν; an arbitrary comparator policy π⋆ (not necessarily an optimal policy). With respect to π⋆, define

the state-action measure d⋆ as

d⋆(s, a) = dπ
⋆

ρ (s) ◦UnifA(a)

i.e. d⋆ samples states from the comparators state visitation measure, dπ
⋆

ρ and actions from the

uniform distribution. Let us permit the sequence of iterates w(0), w(1), . . . w(T−1) used by the Q-

NPG algorithm to be random, where the randomness could be due to sample-based, estimation

error. Suppose the following holds for all t < T :

1. (Excess risk) Assume that the estimation error is bounded as follows:

E

[
L(w(t); θ(t), d(t))− L(w(t)

⋆ ; θ(t), d(t))
]
≤ ǫstat

Note that using a sample based approach we would expect ǫstat = O(1/
√
N) or better, where

N is the number of samples used to estimate. w
(t)
⋆ We formalize this in Corollary 6.2.

2. (Transfer error) Suppose that the best predictor w
(t)
⋆ has an error bounded by ǫbias, in expec-

tation, with respect to the comparator’s measure of d∗. Specifically, assume:

E

[
L(w(t)

⋆ ; θ(t), d⋆)
]
≤ ǫbias.

We refer to ǫbias as the transfer error (or transfer bias); it is the error where relevant distri-

bution is shifted to d⋆. For the softmax policy parameterization for tabular MDPs, ǫbias = 0
(see remark 6.4 for another example).
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In both conditions, the expectations are with respect to the randomness in the sequence of iterates

w(0), w(1), . . . w(T−1), e.g. the approximate algorithm may be sample based.

Shortly, we discuss how the transfer error relates to the more standard approximation-estimation

decomposition. Importantly, with the transfer error, it is always defined with respect to a single,

fixed measure, d⋆.

Assumption 6.2 (Relative condition number). Consider the same ρ, ν, and π⋆ as in Assumption 6.1.

With respect to any state-action distribution υ, define:

Συ = Es,a∼υ

[
φs,aφ

⊤
s,a

]
,

and define

sup
w∈Rd

w⊤Σd⋆w

w⊤Σνw
= κ.

Assume that κ is finite.

Remark 6.3 discusses why it is reasonable to expect that κ is not a quantity related to the size

of the state space.7

Our main theorem below shows how the approximation error, the excess risk, and the condi-

tioning, determine the final performance. Note that both the transfer error ǫbias and κ are defined

with respect to the comparator policy π⋆.

Theorem 6.1. (Agnostic learning with Q-NPG) Fix a state distribution ρ; a state-action distribu-

tion ν; an arbitrary comparator policy π⋆ (not necessarily an optimal policy). Suppose Assump-

tion 6.2 holds and ‖φs,a‖2 ≤ B for all s, a. Suppose the Q-NPG update rule (in (20)) starts with

θ(0) = 0, η =
√

2 log |A|/(B2W 2T ), and the (random) sequence of iterates satisfies Assump-

tion 6.1. We have that

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]
≤ BW

1− γ

√
2 log |A|

T
+

√
4|A|κǫstat
(1− γ)3

+

√
4|A|ǫbias
1− γ

.

The proof is provided in Section 6.4.

Note when ǫbias = 0, our convergence rate is O(
√
1/T ) plus a term that depends on the excess

risk; hence, provided we obtain enough samples, then ǫstat will also tend to 0, and we will be

competitive with the comparison policy π⋆. When ǫbias = 0 and ǫstat = 0, as in the tabular

setting with exact gradients, the additional two terms become 0, consistent with Theorem 5.3

except that the convergence rate is O(
√
1/T ) rather than the faster rate of O(1/T ). Obtaining a

faster rate in the function approximation regime appears to require stronger conditions on how the

approximation errors are controlled at each iteration.

7Technically, we only need the relative condition number supw∈Rd

w⊤Σd⋆w
w⊤Σ

π
(t)w

to be bounded for all t. We state this

as a sufficient condition based on the initial distribution ν due to: this is more interpretable, and, as per Remark 6.3,

this quantity can be bounded in a manner that is independent of the sequence of iterates produced by the algorithm.
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The usual approximation-estimation error decomposition is that we can write our error as:

L(w(t); θ(t), d(t)) = L(w(t); θ(t), d(t))− L(w(t)
⋆ ; θ(t), d(t))︸ ︷︷ ︸

Excess risk

+L(w(t)
⋆ ; θ(t), d(t))︸ ︷︷ ︸

Approximation error

As we obtain more samples, we can drive the excess risk (the estimation error) to 0 (see Corol-

lary 6.2). The approximation error above is due to modeling error. Importantly, for our Q-NPG

performance bound, it is not this standard approximation error notion which is relevant, but it is this

error under a different measure d⋆, i.e. L(w
(t)
⋆ ; θ(t), d⋆). One appealing aspect about the transfer er-

ror is that this error is with respect to a fixed measure, namely d⋆. Furthermore, in practice, modern

machine learning methods often performs favorably with regards to transfer learning, substantially

better than worst case theory might suggest.

The following corollary provides a performance bound in terms of the usual notion of approx-

imation error, at the cost of also depending on the worst case distribution mismatch ratio. The

corollary disentangles the estimation error from the approximation error.

Corollary 6.1. (Estimation error/Approximation error bound for Q-NPG) Consider the same set-

ting as in Theorem 6.1. Rather than assuming the transfer error is bounded (part 2 in Assump-

tion 6.1), suppose that, for all t ≤ T ,

E

[
L(w(t)

⋆ ; θ(t), d(t))
]
≤ ǫapprox.

We have that

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]
≤ BW

1− γ

√
2 log |A|

T
+

√
κ · 4|A|ǫstat

(1− γ)3
+

√∥∥∥d
⋆

ν

∥∥∥
∞
· 4|A|ǫapprox

(1− γ)3
.

Proof: We have the following crude upper bound on the transfer error:

L(w(t)
⋆ ; θ(t), d⋆) ≤

∥∥∥ d⋆

d(t)

∥∥∥
∞
L(w(t)

⋆ ; θ(t), d(t)) ≤ 1

1− γ

∥∥∥d
⋆

ν

∥∥∥
∞
L(w(t)

⋆ ; θ(t), d(t)),

where the last step uses the defintion of d(t) (see (19)). This implies ǫbias ≤ 1
1−γ

∥∥∥d⋆

ν

∥∥∥
∞
ǫapprox, and

the corollary follows.

The above also shows the striking difference between the effects of estimation error and approx-

imation error. The proof shows how the transfer error notion is weaker than previous conditions

based on distribution mistmatch coefficients or concentrability coefficients. Also, as discussed in

Scherrer [2014], the (distribution mismatch) coefficient

∥∥∥d⋆

ν

∥∥∥
∞

is already weaker than the more

standard concentrability coefficients.

A few additional remarks are now in order. We now make a few observations with regards to

κ.

Remark 6.3. (Dimension dependence in κ and the importance of ν) It is reasonable to think about

κ as being dimension dependent (or worse), but it is not necessarily related to the size of the state
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space. For example, if ‖φs,a‖2 ≤ B, then κ ≤ B2

σmin(Es,a∼ν [φs,aφ⊤
s,a])

though this bound may be

pessimistic. Here, we also see the importance of choice of ν in having a small (relative) condition

number; in particular, this is the motivation for considering the generalization which allows for a

starting state-action distribution ν vs. just a starting state distribution µ (as we did in the tabular

case). Roughly speaking, we desire a ν which provides good coverage over the features. As the

following lemma shows, there always exists a universal distribution ν, which can be constructed

only with knowledge of the feature set (without knowledge of d⋆), such that κ ≤ d.

Lemma 6.1. (κ ≤ d is always possible) Let Φ = {φ(s, a)|(s, a) ∈ S × A} ⊂ R
d and suppose Φ

is a compact set. There always exists a state-action distribution ν, which is supported on at most

d2 state-action pairs and which can be constructed only with knowledge of Φ (without knowledge

of the MDP or d⋆), such that:

κ ≤ d.

Proof: The distribution can be found through constructing the minimal volume ellipsoid con-

taining Φ, i.e. the Loẅner-John ellipsoid [John, 1948]. In particular, this ν is supported on the

contact points between this ellipsoid and Φ; the lemma immediately follows from properties of

this ellipsoid (e.g. see Ball [1997], Bubeck et al. [2012]).

It is also worth considering a more general example (beyond tabular MDPs) in which ǫbias = 0
for the log-linear policy class.

Remark 6.4. (ǫbias = 0 for “linear” MDPs) In the recent linear MDP model of Jin et al. [2019],

Yang and Wang [2019], Jiang et al. [2017], where the transition dynamics are low rank, we have

that ǫbias = 0 provided we use the features of the linear MDP. Our guarantees also permit model

misspecification of linear MDPs, with non worst-case approximation error where ǫbias 6= 0.

Remark 6.5. (Comparison with POLITEX and EE-POLITEX) Compared with POLITEX [Abbasi-Yadkori et al.,

2019a], Assumption 6.2 is substantially milder, in that it just assumes a good relative condition

number for one policy rather than all possible policies (which cannot hold in general even for tab-

ular MDPs). Changing this assumption to an analog of Assumption 6.2 is the main improvement

in the analysis of the EE-POLITEX [Abbasi-Yadkori et al., 2019b] algorithm. They provide a re-

gret bound for the average reward setting, which is qualitatively different from the suboptimality

bound in the discounted setting that we study. They provide a specialized result for linear function

approximation, similar to Theorem 6.1.

6.2.1 Q-NPG Sample Complexity

Assumption 6.3 (Episodic Sampling Oracle). For a fixed state-action distribution ν, we assume

the ability to: start at s0, a0 ∼ ν; continue to act thereafter in the MDP according to any policy

π; and terminate this “rollout” when desired. With this oracle, it is straightforward to obtain

unbiased samples of Qπ(s, a) (or Aπ(s, a)) under s, a ∼ dπν for any π; see Algorithms 1 and 3.

Algorithm 2 provides a sample based version of the Q-NPG algorithm; it simply uses stochas-

tic projected gradient ascent within each iteration. The following corollary shows this algorithm

suffices to obtain an accurate sample based version of Q-NPG.
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Algorithm 1 Sampler for: s, a ∼ dπν and unbiased estimate of Qπ(s, a)

Require: Starting state-action distribution ν.

1: Sample s0, a0 ∼ ν.

2: Sample s, a ∼ dπν as follows: at every timestep h, with probability γ, act according to π; else,

accept (sh, ah) as the sample and proceed to Step 4. See (19).

3: From sh, ah, continue to execute π, and use a termination probability of 1− γ. Upon termina-

tion, set Q̂π(sh, ah) as the undiscounted sum of rewards from time h onwards.

4: return (sh, ah) and Q̂π(sh, ah).

Corollary 6.2. (Sample complexity of Q-NPG) Assume we are in the setting of Theorem 6.1 and

that we have access to an episodic sampling oracle (i.e. Assumption 6.3). Suppose that the Sample

Based Q-NPG Algorithm (Algorithm 2) is run for T iterations, with N gradient steps per iteration,

with an appropriate setting of the learning rates η and α. We have that:

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]

≤ BW

1− γ

√
2 log |A|

T
+

√
8κ|A|BW (BW + 1)

(1− γ)4
1

N1/4
+

√
4|A|ǫbias
1− γ

.

Furthermore, since each episode has expected length 2/(1 − γ), the expected number of total

samples used by Q-NPG is 2NT/(1− γ).

Proof: Note that our sampled gradients are bounded by G := 2B(BW+ 1
1−γ

). Usingα = W
G
√
N

,

a standard analysis for stochastic projected gradient ascent (Theorem E.3) shows that:

ǫstat ≤
2BW (BW + 1

1−γ
)

√
N

.

The proof is completed via substitution.

Remark 6.6. (Improving the scaling with N) Our current rate of convergence is 1/N1/4 due to our

use of stochastic projected gradient ascent. Instead, for the least squares estimator, ǫstat would be

O(d/N) provided certain further regularity assumptions hold (a bound on the minimal eigenvalue

of Σν would be sufficient but not necessary. See Hsu et al. [2014] for such conditions). With such

further assumptions, our rate of convergence would be O(1/
√
N).

6.3 NPG: Performance Bounds for Smooth Policy Classes

We now return to the analyzing the standard NPG update rule, which uses advantages rather than

Q-values (see Section 6.1). It is helpful to define

LA(w; θ, υ) := Es,a∼υ

[(
Aπθ(s, a)− w · ∇θ log πθ(a|s)

)2
]
.
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Algorithm 2 Sample-based Q-NPG for Log-linear Policies

Require: Learning rate η; SGD learning rate α; number of SGD iterations N
1: Initialize θ(0) = 0.

2: for t = 0, 1, . . . , T − 1 do

3: Initialize w0 = 0
4: for n = 0, 1, . . . , N − 1 do

5: Call Algorithm 1 to obtain s, a ∼ d(t) and an unbiased estimate Q̂(s, a).
6: Update:

wn+1 = ProjW

(
wn − 2α

(
wn · φs,a − Q̂(s, a)

)
φs,a

)

whereW = {w : ‖w‖2 ≤W}.
7: end for

8: Set ŵ(t) = 1
N

∑N
n=1wn.

9: Update θ(t+1) = θ(t) + ηŵ(t).

10: end for

where υ is state-action distribution, and the subscript of A denotes the loss function uses advantages

(rather than Q-values). The iterates of the NPG algorithm can be viewed as minimizing this loss

under some appropriately chosen measure.

We now consider an approximate version of the NPG update rule:

Approx. NPG: θ(t+1) = θ(t) + ηw(t), w(t) ≈ argmin‖w‖2≤W LA(w; θ
(t), d(t)), (21)

where again we use the on-policy, fitting distribution d(t). As with Q-NPG, we also permit the

use of a starting state-action distribution ν as opposed to just a starting state distribution (see

Remark 6.3). Again, we let w
(t)
⋆ denote the minimizer, i.e. w

(t)
⋆ ∈ argmin‖w‖2≤W LA(w; θ

(t), d(t)).
For this section, our analysis will focus on more general policy classes, beyond log-linear policy

classes. In particular, we make the following smoothness assumption on the policy class:

Assumption 6.4. (Policy Smoothness) Assume for all s ∈ S and a ∈ A that log πθ(a|s) is a

β-smooth function of θ (to recall the definition of smoothness, see (24)).

It is not to difficult to verify that the tabular softmax policy parameterization is a 1-smooth

policy class in the above sense. The more general class of log-linear policies is also smooth as we

remark below.

Remark 6.7. (Smoothness of the log-linear policy class) For the log-linear policy class (see Sec-

tion 6.1.1), smoothness is implied if the features φ have bounded Euclidean norm. Precisely, if

the feature mapping φ satisfies ‖φs,a‖2 ≤ B, then it is not difficult to verify that log πθ(a|s) is a

B2-smooth function.

For any state-action distribution υ, define:

Σθ
υ = Es,a∼υ

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤

]
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and, again, we use Σ
(t)
υ as shorthand for Σθ(t)

υ .

Assumption 6.5. (Estimation/Transfer/Conditioning) Fix a state distribution ρ; a state-action dis-

tribution ν; an arbitrary comparator policy π⋆ (not necessarily an optimal policy). With respect to

π⋆, define the state-action measure d⋆ as

d⋆(s, a) = dπ
⋆

ρ (s)π⋆(a|s).
Note that, in comparison to Assumption 6.1, d⋆ is the state-action visitation measure of the com-

parator policy. Let us permit the sequence of iterates w(0), w(1), . . . w(T−1) used by the NPG al-

gorithm to be random, where the randomness could be due to sample-based, estimation error.

Suppose the following holds for all t < T :

1. (Excess risk) Assume the estimation error is bounded as:

E

[
LA(w

(t); θ(t), d(t))− LA(w
(t)
⋆ ; θ(t), d(t)) | θ(t)

]
≤ ǫstat

i.e. the above conditional expectation is bounded (with probability one).8 As we see in

Corollary 6.2, we can guarantee ǫstat to drop as
√

1/N .

2. (Transfer error) Suppose that:

E

[
LA(w

(t)
⋆ ; θ(t), d⋆)

]
≤ ǫbias.

3. (Relative condition number) For all iterations t, assume the average relative condition num-

ber is bounded as follows:

E

[
sup
w∈Rd

w⊤Σ
(t)
d⋆w

w⊤Σ
(t)
ν w

]
≤ κ. (22)

Note that term inside the expectation is a random quantity as θ(t) is random.

In the above conditions, the expectation is with respect to the randomness in the sequence of

iterates w(0), w(1), . . . w(T−1).

Analogous to our Q-NPG theorem, our main theorem for NPG shows how the transfer error is

relevant in addition the statistical error ǫstat.

Theorem 6.2. (Agnostic learning with NPG) Fix a state distribution ρ; a state-action distribution

ν; an arbitrary comparator policy π⋆ (not necessarily an optimal policy). Suppose Assumption 6.4

holds. Suppose the NPG update rule (in (21)) starts with π(0) being the uniform distribution (at

each state), η =
√
2 log |A|/(βW 2T ), and the (random) sequence of iterates satisfies Assump-

tion 6.5. We have that

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]
≤ W

1− γ

√
2β log |A|

T
+

√
κǫstat

(1− γ)3
+

√
ǫbias

1− γ
.

8The use of a conditional expectation here (vs. the unconditional one in Assumption 6.1) permits the assumption

to hold even in settings where we may reuse data in the sample-based approximation of LA. Also, the expectation

over the iterates allows a more natural assumption on the relative condition number, relevant for the more general case

of smooth policies.
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The proof is provided in Section 6.4.

Remark 6.8. (The |A| dependence: NPG vs. Q-NPG) Observe there is no polynomial dependence

on |A| in the rate for NPG (in constrast to Theorem 6.1); also observe that here we define d⋆ as

the state-action distribution of π⋆ in Assumption 6.5, as opposed to a uniform distribution over

the actions, as in Assumption 6.1. The main difference arises in the analysis in that, even for Q-

NPG, we need to bound the error in fitting the advantage estimates; this leads to the dependence

on |A| (which can be removed with a path dependent bound, i.e. a bound which depends on the

sequence of iterates produced by the algorithm)9. For NPG, the direct fitting of the advantage

function sidesteps this conversion step. Note that the relative condition number assumption in

Q-NPG (Assumption 6.2) is a weaker assumption, due to that it can be bounded independently

of the path of the algorithm (see Remark 6.2), while NPG’s centering of the features makes the

assumption on the relative condition number depend on the path of the algorithm.

Remark 6.9. (Generalizing Q-NPG for smooth policies) A similar reasoning as the analysis here

can be also used to establish a convergence result for the Q-NPG algorithm in this more general

setting of smooth policy classes. Concretely, we can analyze the Q-NPG update described for

neural policy classes in Section 6.1.2, assuming that the function fθ is Lipschitz-continuous in θ.

Like for Theorem 6.2, the main modification is that Assumption 6.2 on relative condition numbers

is now defined using the covariance matrix for the features fθ(s, a), which depend on θ, as opposed

to some a feature map φ(s, a) in the log-linear case. The rest of the analysis follows with an

appropriate adaptation of the results above.

6.3.1 NPG Sample Complexity

Algorithm 4 provides a sample based version of the NPG algorithm, again using stochastic pro-

jected gradient ascent; it uses a slight modification of the Q-NPG algorithm to obtain unbiased

gradient estimates. The following corollary shows that this algorithm provides an accurate sample

based version of NPG.

Corollary 6.3. (Sample complexity of NPG) Assume we are in the setting of Theorem 6.2 and that

we have access to an episodic sampling oracle (i.e. Assumption 6.3). Suppose that the Sample

Based NPG Algorithm (Algorithm 4) is run for T iterations, with N gradient steps per iteration.

Also, suppose that ‖∇θ log π
(t)(a|s)‖2 ≤ B holds with probability one. There exists a setting of η

and α such that:

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]

≤ W

1− γ

√
2β log |A|

T
+

√
8κBW (BW + 1)

(1− γ)4
1

N1/4
+

√
ǫbias

1− γ
.

Furthermore, since each episode has expected length 2/(1 − γ), the expected number of total

samples used by NPG is 2NT/(1− γ).

9For Q-NPG, we have to bound two distribution shift terms to both π⋆ and π(t) at step t of the algorithm.
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Algorithm 3 Sampler for: s, a ∼ dπν and unbiased estimate of Aπ(s, a)

Require: Starting state-action distribution ν.

1: Set Q̂π = 0 and V̂ π = 0.

2: Start at state s0 ∼ ν. Sample a0 ∼ ν(·|s0) (though do not necessarily execute a0).

3: (dπν sampling) At every timestep h ≥ 0,

• With probability γ, execute ah, transition to sh+1, and sample ah+1 ∼ π(·|sh+1).

• Else accept (sh, ah) as the sample and proceed to Step 4.

4: (Aπ(s, a) sampling) Set SampleQ = True with probability 1/2.

• If SampleQ = True, execute ah at state sh and then continue executing π with a termina-

tion probability of 1 − γ. Upon termination, set Q̂π as the undiscounted sum of rewards

from time h onwards.

• Else sample a′h ∼ π(·|sh). Then execute a′h at state sh and then continue executing π

with a termination probability of 1 − γ. Upon termination, set V̂ π as the undiscounted

sum of rewards from time h onwards.

5: return (sh, ah) and Âπ(sh, ah) = 2(Q̂π − V̂ π).

Proof: Let us see that the update direction in Step 6 of Algorithm 4 uses an unbiased estimate

of the true gradient of the loss function LA:

2Es,a∼d(t)

[(
wn · ∇θ log π

(t)(a|s)− Â(s, a)

)
∇θ log π

(t)(a|s)
]

= 2Es,a∼d(t)

[(
wn · ∇θ log π

(t)(a|s)− E[Â(s, a)|s, a]
)
∇θ log π

(t)(a|s)
]

= 2Es,a∼d(t)

[(
wn · ∇θ log π

(t)(a|s)− A(t)(s, a)

)
∇θ log π

(t)(a|s)
]

= ∇wLA(wn; θ
(t), d(t))

where the last step follows due to that sampling procedure in Algorithm 3 produces a conditionally

unbiased estimate.

Since ‖∇θ log π
(t)(a|s)‖2 ≤ B and since Â(s, a) ≤ 2/(1 − γ), our sampled gradients are

bounded by G := 8B(BW + 1
1−γ

). The remainder of the proof follows that of Corollary 6.2

6.4 Analysis

We first proceed by providing a general analysis of NPG, for arbitrary sequences. We then special-

ize it to complete the proof of our two main theorems in this section.
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Algorithm 4 Sample-based NPG

Require: Learning rate η; SGD learning rate α; number of SGD iterations N
1: Initialize θ(0) = 0.

2: for t = 0, 1, . . . , T − 1 do

3: Initialize w0 = 0
4: for n = 0, 1, . . . , N − 1 do

5: Call Algorithm 3 to obtain s, a ∼ d(t), and an unbiased estimate Â(s, a) of A(t)(s, a).
6: Update:

wn+1 = ProjW

(
wn − 2α

(
wn · ∇θ log π

(t)(a|s)− Â(s, a)
)
∇θ log π

(t)(a|s)
)
,

whereW = {w : ‖w‖2 ≤W}
7: end for

8: Set ŵ(t) = 1
N

∑N
n=1wn.

9: Update θ(t+1) = θ(t) + ηŵ(t).

10: end for

6.4.1 The NPG “Regret Lemma”

It is helpful for us to consider NPG more abstractly, as an update rule of the form

θ(t+1) = θ(t) + ηw(t). (23)

We will now provide a lemma where w(t) is an arbitrary (bounded) sequence, which will be helpful

when specialized.

Recall a function f : Rd → R is said to be β-smooth if for all x, x′ ∈ R
d:

‖∇f(x)−∇f(x′)‖2 ≤ β‖x− x′‖2 ,

and, due to Taylor’s theorem, recall that this implies:

∣∣∣∣f(x′)− f(x)−∇f(x) · (x′ − x)

∣∣∣∣ ≤
β

2
‖x′ − x‖22 . (24)

The following analysis of NPG is based on the mirror-descent approach developed in [Even-Dar et al.,

2009], which motivates us to refer to it as a “regret lemma”.

Lemma 6.2. (NPG Regret Lemma) Fix a comparison policy π̃ and a state distribution ρ. Assume

for all s ∈ S and a ∈ A that log πθ(a|s) is a β-smooth function of θ. Consider the update rule

(23), where π(0) is the uniform distribution (for all states) and where the sequence of weights

w(0), . . . , w(T ), satisfies ‖w(t)‖2 ≤ W (but is otherwise arbitrary). Define:

errt = Es∼d̃ Ea∼π̃(·|s)

[
A(t)(s, a)− w(t) · ∇θ log π

(t)(a|s)
]
.
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We have that:

min
t<T

{
V π̃(ρ)− V (t)(ρ)

}
≤ 1

1− γ

(
log |A|
ηT

+
ηβW 2

2
+

1

T

T−1∑

t=0

errt

)
.

Proof: By smoothness (see (24)),

log
π(t+1)(a|s)
π(t)(a|s) ≥ ∇θ log π

(t)(a|s) ·
(
θ(t+1) − θ(t)

)
− β

2
‖θ(t+1) − θ(t)‖22

= η∇θ log π
(t)(a|s) · w(t) − η2

β

2
‖w(t)‖22.

We use d̃ as shorthand for dπ̃ρ (note ρ and π̃ are fixed); for any policy π, we also use πs as

shorthand for the vector π(·|s). Using the performance difference lemma (Lemma 3.2),

Es∼d̃

(
KL(π̃s||π(t)

s )−KL(π̃s||π(t+1)
s )

)

= Es∼d̃ Ea∼π̃(·|s)

[
log

π(t+1)(a|s)
π(t)(a|s)

]

≥ ηEs∼d̃ Ea∼π̃(·|s)
[
∇θ log π

(t)(a|s) · w(t)
]
− η2

β

2
‖w(t)‖22 (using previous display)

= ηEs∼d̃ Ea∼π̃(·|s)
[
A(t)(s, a)

]
− η2

β

2
‖w(t)‖22

+ ηEs∼d̃ Ea∼π̃(·|s)
[
∇θ log π

(t)(a|s) · w(t) − A(t)(s, a)
]

= (1− γ)η

(
V π̃(ρ)− V (t)(ρ)

)
− η2

β

2
‖w(t)‖22 − η errt

Rearranging, we have:

V π̃(ρ)− V (t)(ρ) ≤ 1

1− γ

(
1

η
Es∼d̃

(
KL(π̃s||π(t)

s )−KL(π̃s||π(t+1)
s )

)
+

ηβ

2
W 2 + errt

)

Proceeding,

1

T

T−1∑

t=0

(V π̃(ρ)− V (t)(ρ)) ≤ 1

ηT (1− γ)

T−1∑

t=0

Es∼d̃ (KL(π̃s||π(t)
s )−KL(π̃s||π(t+1)

s ))

+
1

T (1− γ)

T−1∑

t=0

(
ηβW 2

2
+ errt

)

≤ Es∼d̃KL(π̃s||π(0))

ηT (1− γ)
+

ηβW 2

2(1− γ)
+

1

T (1− γ)

T−1∑

t=0

errt

≤ log |A|
ηT (1− γ)

+
ηβW 2

2(1− γ)
+

1

T (1− γ)

T−1∑

t=0

errt,

which completes the proof.
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6.4.2 Proofs of Theorem 6.1 and 6.2

Proof: (of Theorem 6.1) Using the NPG regret lemma (Lemma 6.2) and the smoothness of the

log-linear policy class (see Example 6.7),

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]
≤ BW

1− γ

√
2 log |A|

T
+ E

[
1

T

T−1∑

t=0

errt

]
.

where we have used our setting of η.

We make the following decomposition of errt:

errt = Es∼d⋆ρ,a∼π⋆(·|s)

[
A(t)(s, a)− w(t)

⋆ · ∇θ log π
(t)(a|s)

]

+ Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· ∇θ log π

(t)(a|s)
]
.

For the first term, using that∇θ log πθ(a|s) = φs,a − Ea′∼πθ(·|s)[φs,a′] (see Section 6.1.1), we have:

Es∼d⋆ρ,a∼π⋆(·|s)

[
A(t)(s, a)− w(t)

⋆ · ∇θ log π
(t)(a|s)

]

= Es∼d⋆ρ,a∼π⋆(·|s)

[
Q(t)(s, a)− w(t)

⋆ · φs,a

]
− Es∼d⋆ρ,a

′∼π(t)(·|s)

[
Q(t)(s, a′)− w(t)

⋆ · φs,a′

]

≤
√

Es∼d⋆ρ,a∼π⋆(·|s)

(
Q(t)(s, a)− w

(t)
⋆ · φs,a

)2
+

√
Es∼d⋆ρ,a

′∼π(t)(·|s)

(
Q(t)(s, a′)− w

(t)
⋆ · φs,a′

)2

≤ 2

√
|A|Es∼d⋆ρ,a∼UnifA

[ (
Q(t)(s, a)− w

(t)
⋆ · φs,a

)2 ]
= 2

√
|A|L(w(t)

⋆ ; θ(t), d⋆). (25)

where we have used the definition of d⋆ and L(w
(t)
⋆ ; θ(t), d⋆) in the last step.

For the second term, let us now show that:

Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· ∇θ log π

(t)(a|s)
]

≤ 2

√
|A|κ
1− γ

(
L(w(t); θ(t), d(t))− L(w

(t)
⋆ ; θ(t), d(t))

)
(26)

To see this, first observe that a similar argument to the above leads to:

Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· ∇θ log π

(t)(a|s)
]

= Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· φs,a

]
− Es∼d⋆ρ,a

′∼π(t)(·|s)

[(
w(t)

⋆ − w(t)
)
· φs,a′

]

≤ 2

√
|A|Es,a∼d⋆

[ ((
w

(t)
⋆ − w(t)

)
· φs,a

)2 ]
= 2

√
|A| · ‖w(t)

⋆ − w(t)‖2Σd⋆
,

where we use the notation ‖x‖2M := x⊤Mx for a matrix M and a vector x. From the definition of

κ,

‖w(t)
⋆ − w(t)‖2Σd⋆

≤ κ‖w(t)
⋆ − w(t)‖2Σν

≤ κ

1− γ
‖w(t)

⋆ − w(t)‖2Σ
d(t)
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using that (1 − γ)ν ≤ dπ
(t)

ν (see (19)). Due to that w
(t)
⋆ minimizes L(w; θ(t), d(t)) over the set

W := {w : ‖w‖2 ≤W}, for any w ∈ W the first-order optimality conditions for w
(t)
⋆ imply that:

(w − w(t)
⋆ ) · ∇L(w(t)

⋆ ; θ(t), d(t)) ≥ 0.

Therefore, for any w ∈ W ,

L(w; θ(t), d(t))− L(w(t)
⋆ ; θ(t), d(t))

= Es,a∼d(t)

[(
w · φ(s, a)− w⋆ · φ(s, a) + w⋆ · φ(s, a)−Q(t)(s, a)

)2]− L(w(t)
⋆ ; θ(t), d(t))

= Es,a∼d(t)

[(
w · φ(s, a)− w⋆ · φ(s, a)

)2]
+ 2(w − w⋆)Es,a∼d(t)

[
φ(s, a)

(
w⋆ · φ(s, a)−Q(t)(s, a)

)]

= ‖w − w(t)
⋆ ‖2Σ

d(t)
+ (w − w(t)

⋆ ) · ∇L(w(t)
⋆ ; θ(t), d(t))

≥ ‖w − w(t)
⋆ ‖2Σ

d(t)
.

Noting that w(t) ∈ W by construction in Algorithm 4 yields the claimed bound on the second term

in (26).

Using the bounds on the first and second terms in (25) and (26), along with concavity of the

square root function, we have that:

E[errt] ≤ 2

√
|A|E

[
L(w

(t)
⋆ ; θ(t), d⋆)

]
+ 2

√
|A|κ
1− γ

E

[
L(w(t); θ(t), d(t))− L(w

(t)
⋆ ; θ(t), d(t))

]
.

The proof is completed by substitution and using our assumptions on ǫstat and ǫbias.
The following proof for the NPG algorithm follows along similar lines.

Proof: (of Theorem 6.2) Using the NPG regret lemma and our setting of η,

E

[
min
t<T

{
V π⋆

(ρ)− V (t)(ρ)
}]
≤ W

1− γ

√
2β log |A|

T
+ E

[
1

T

T−1∑

t=0

errt

]
.

where the expectation is with respect to the sequence of iterates w(0), w(1), . . . w(T−1).

Again, we make the following decomposition of errt:

errt = Es∼d⋆ρ,a∼π⋆(·|s)

[
A(t)(s, a)− w(t)

⋆ · ∇θ log π
(t)(a|s)

]

+ Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· ∇θ log π

(t)(a|s)
]
.

For the first term,

Es∼d⋆ρ,a∼π⋆(·|s)

[
A(t)(s, a)− w(t)

⋆ · ∇θ log π
(t)(a|s)

]

≤
√
Es∼d⋆ρ,a∼π⋆(·|s)

[ (
A(t)(s, a)− w

(t)
⋆ · φs,a

)2 ]
=

√
LA(w

(t)
⋆ ; θ(t), d⋆).
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where we have used the definition of LA(w
(t)
⋆ ; θ(t), d⋆) in the last step.

For the second term, a similar argument leads to:

Es∼d⋆ρ,a∼π⋆(·|s)

[(
w(t)

⋆ − w(t)
)
· ∇θ log π

(t)(a|s)
]
=

√
‖w(t)

⋆ − w(t)‖2Σd⋆
.

Define κ(t) := ‖(Σ(t)
ν )−1/2Σd⋆(Σ

(t)
ν )−1/2‖2, which is the relative condition number at iteration t.

We have

‖w(t)
⋆ − w(t)‖2Σd⋆

≤ ‖(Σ(t)
ν )−1/2Σd⋆(Σ

(t)
ν )−1/2‖2 ‖w(t)

⋆ − w(t)‖2Σν

≤ κ(t)

1− γ
‖w(t)

⋆ − w(t)‖2Σ
d(t)

≤ κ(t)

1− γ

(
LA(w

(t); θ(t), d(t))− LA(w
(t)
⋆ ; θ(t), d(t))

)

where the last step uses that w
(t)
⋆ is a minimizer of LA overW and that w(t) is feasible as before

(see the proof of Theorem 6.1). Now taking an expectation we have:

E
[
‖w(t)

⋆ − w(t)‖2Σd⋆

]
≤ E

[
κ(t)

1− γ

(
LA(w

(t); θ(t), d(t))− LA(w
(t)
⋆ ; θ(t), d(t))

)]

= E

[
κ(t)

1− γ
E

[
LA(w

(t); θ(t), d(t))− LA(w
(t)
⋆ ; θ(t), d(t)) | θ(t)

]]

≤ E

[
κ(t)

1− γ

]
· ǫstat ≤

κǫstat
1− γ

where we have used our assumption on κ and ǫstat.
The proof is completed by substitution and using the concavity of the square root function.

7 Discussion

This work provides a systematic study of the convergence properties of policy optimization tech-

niques, both in the tabular and the function approximation settings. At the core, our results imply

that the non-convexity of the policy optimization problem is not the fundamental challenge for

typical variants of the policy gradient approach. This is evidenced by the global convergence re-

sults which we establish and that demonstrate the relative niceness of the underlying optimization

problem. At the same time, our results highlight that insufficient exploration can lead to the con-

vergence to sub-optimal policies, as is also observed in practice; technically, we show how this is

an issue of conditioning. Conversely, we can expect typical policy gradient algorithms to find the

best policy from amongst those whose state-visitation distribution is adequately aligned with the

policies we discover, provided a distribution-shifted notion of approximation error is small.

In the tabular case, our results show that the nature and severity of the exploration/distribution

mismatch term differs in different policy optimization approaches. For instance, we find that do-

ing policy gradient in its standard form for both the direct and softmax parameterizations can be
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slow to converge, particularly in the face of distribution mismatch, even when policy gradients are

computed exactly. Natural policy gradient, on the other hand, enjoys a fast dimension-free conver-

gence when we are in tabular settings with exact gradients. On the other hand, for the function

approximation setting, or when using finite samples, all algorithms suffer to some degree from the

exploration issue captured through a conditioning effect.

With regards to function approximation, the guarantees herein are the first provable results that

permit average case approximation errors, where the guarantees do not have explicit worst case

dependencies over the state space. These worst case dependencies are avoided by precisely char-

acterizing an approximation/estimation error decomposition, where the relevant approximation

error is under distribution shift to an optimal policies measure. Here, we see that successful func-

tion approximation relies on two key aspects: good conditioning (related to exploration) and low

distribution-shifted, approximation error. In particular, these results identify the relevant measure

of the expressivity of a policy class, for the natural policy gradient.

With regards to sample size issues, we showed that simply using stochastic (projected) gradient

ascent suffices for accurate policy optimization. However, in terms of improving sample efficiency

and polynomial dependencies, there are number of important questions for future research, includ-

ing variance reduction techniques along with data re-use.

There are number of compelling directions for further study. The first is in understanding

how to remove the density ratio guarantees among prior algorithms; our results are suggestive

that the incremental policy optimization approaches, including CPI [Kakade and Langford, 2002],

PSDP [Bagnell et al., 2004], and MD-MPI Geist et al. [2019], may permit such an improved anal-

ysis. The question of understanding what representations are robust to distribution shift is well-

motivated by the nature of our distribution-shifted, approximation error (the transfer error). Fi-

nally, we hope that policy optimization approaches can be combined with exploration approaches,

so that, provably, these approaches can retain their robustness properties (in terms of their agnostic

learning guarantees) while mitigating the need for a well conditioned initial starting distribution.
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A Proofs for Section 3

Proof:[of Lemma 3.1] Recall the MDP in Figure 1. Note that since actions in terminal states s3,

s4 and s5 do not change the expected reward, we only consider actions in states s1 and s2. Let the

”up/above” action as a1 and ”right” action as a2. Note that

V π(s1) = π(a2|s1)π(a1|s2) · r
Consider

θ(1) = (log 1, log 3, log 3, log 1), θ(2) = (− log 1,− log 3,− log 3,− log 1)

where θ is written as a tuple (θa1,s1, θa2,s1, θa1,s2, θa2,s2). Then, for the softmax parameterization,

we have

π(1)(a2|s1) =
3

4
; π(1)(a1|s2) =

3

4
; V (1)(s1) =

9

16
r

and

π(2)(a2|s1) =
1

4
; π(2)(a1|s2) =

1

4
; V (2)(s1) =

1

16
r

Also, for θ(mid) = θ(1)+θ(2)

2
,

π(mid)(a2|s1) =
1

2
; π(mid)(a1|s2) =

1

2
; V (mid)(s1) =

1

4
r

This gives

V (1)(s1) + V (2)(s1) > 2V (mid)(s1)

which shows that V π is non-concave.

Proof:[of Lemma 3.2] Let Prπ(τ |s0 = s) denote the probability of observing a trajectory τ
when starting in state s and following the policy π. Using a telescoping argument, we have:

V π(s)− V π′

(s) = Eτ∼Prπ(τ |s0=s)

[ ∞∑

t=0

γtr(st, at)

]
− V π′

(s)

= Eτ∼Prπ(τ |s0=s)

[ ∞∑

t=0

γt
(
r(st, at) + V π′

(st)− V π′

(st)
)]
− V π′

(s)

(a)
= Eτ∼Prπ(τ |s0=s)

[ ∞∑

t=0

γt
(
r(st, at) + γV π′

(st+1)− V π′

(st)
)]

(b)
= Eτ∼Prπ(τ |s0=s)

[ ∞∑

t=0

γt
(
r(st, at) + γE[V π′

(st+1)|st, at]− V π′

(st)
)]

= Eτ∼Prπ(τ |s0=s)

[ ∞∑

t=0

γtAπ′

(st, at)

]
=

1

1− γ
Es′∼dπs Ea∼π(·|s)γ

tAπ′

(s′, a),

where (a) rearranges terms in the summation and cancels the V π′
(s0) term with the −V π′

(s) out-

side the summation, and (b) uses the tower property of conditional expectations and the final equal-

ity follows from the definition of dπs .
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B Proofs for Section 4

B.1 Proofs for Section 4.2

We first define first-order optimality for constrained optimization.

Definition B.1 (First-order Stationarity). A policy πθ ∈ ∆(A)|S| is ǫ-stationary with respect to the

initial state distribution µ if

G(πθ) := max
πθ+δ∈∆(A)|S|, ‖δ‖2≤1

δ⊤∇πV
πθ(µ) ≤ ǫ.

where ∆(A)|S| is the set of all policies.

Due to that we are working with the direct parameterization (see (2)), we drop the θ subscript.

Remark B.1. If ǫ = 0, then the definition simplifies to δ⊤∇πV
π(µ) ≤ 0. Geometrically, δ is a

feasible direction of movement since the probability simplex ∆(A)|S| is convex. Thus the gradient

is negatively correlated with any feasible direction of movement, and so π is first-order stationary.

Proposition B.1. Let V π(µ) be β-smooth in π. Define the gradient mapping

Gη(π) =
1

η

(
P∆(A)|S|(π + η∇πV

π(µ))− π
)
,

and the update rule for the projected gradient is π+ = π + ηGη(π). If ‖Gη(π)‖2 ≤ ǫ, then

max
π+δ∈∆(A)|S|, ‖δ‖2≤1

δ⊤∇πV
π+

(µ) ≤ ǫ(ηβ + 1).

Proof: By Theorem E.2,

∇πV
π+

(µ) ∈ N∆(A)|S|(π+) + ǫ(ηβ + 1)B2,

where B2 is the unit ℓ2 ball, and N∆(A)|S| is the normal cone of the product simplex ∆(A)|S|.
Since ∇πV

π+
(µ) is ǫ(ηβ + 1) distance from the normal cone and δ is in the tangent cone, then

δ⊤∇πV
π+
(µ) ≤ ǫ(ηβ + 1).

Proof:[of Theorem 4.1] Recall the definition of gradient mapping

Gη(π) =
1

η

(
P∆(A)|S|(π + η∇πV

(t)(µ))− π
)

From Lemma D.3, we have V π(s) is β-smooth for all states s (and also hence V π(µ) is also β-

smooth) with β = 2γ|A|
(1−γ)3

. Then, from standard result (Theorem E.1), we have that for Gη(π) with

step-size η = 1
β

,

min
t=0,1,...,T−1

‖Gη(π(t))‖2 ≤
√
2β(V ⋆(µ)− V (0)(µ))√

T

49



Then, from Proposition B.1, we have

min
t=0,1,...,T

max
π(t)+δ∈∆(A)|S|, ‖δ‖2≤1

δ⊤∇πV
π(t+1)

(µ) ≤ (ηβ + 1)

√
2β(V ⋆(µ)− V (0)(µ))√

T

Observe that

max
π̄∈∆(A)|S|

(π̄ − π)⊤∇πV
π(µ) = 2

√
|S| max

π̄∈∆(A)|S|

1

2
√
|S|

(π̄ − π)⊤∇πV
π(µ)

≤ 2
√
|S| max

π+δ∈∆(A)|S|, ‖δ‖2≤1
δ⊤∇πV

π(µ)

where the last step follows as ‖π̄ − π‖2 ≤ 2
√
|S|. And then using Lemma 4.1 and ηβ = 1, we

have

min
t=0,1,...,T

V ⋆(ρ)− V (t)(ρ) ≤ 4
√
|S|

1− γ

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥
∞

√
2β(V ⋆(µ)− V (0)(µ))√

T

We can get our required bound of ǫ, if we set T such that

4
√
|S|

1− γ

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥
∞

√
2β(V ⋆(µ)− V (0)(µ))√

T
≤ ǫ

or, equivalently,

T ≥ 32|S|β(V ⋆(µ)− V (0)(µ))

(1− γ)2ǫ2

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥

2

∞

.

Using V ⋆(µ)− V (0)(µ) ≤ 1
1−γ

and β = 2γ|A|
(1−γ)3

from Lemma D.3 leads to the desired result.

B.2 Proofs for Section 4.3

Recall the MDP in Figure 2. Each trajectory starts from the initial state s0, and we use the discount

factor γ = H/(H+1). Recall that we work with the direct parameterization, where πθ(a|s) = θs,a
for a = a1, a2, a3 and πθ(a4|s) = 1− θs,a1 − θs,a2 − θs,a3 . Note that since states s0 and sH+1 only

have once action, therefore, we only consider the parameters for states s1 to sH . For this policy

class and MDP, let P θ be the state transition matrix under πθ, i.e. [P θ]s,s′ is the probability of going

from state s to s′ under policy πθ:

[P θ]s,s′ =
∑

a∈A
πθ(a|s)P (s′|s, a).

For the MDP illustrated in Figure 2, the entries of this matrix are given as:

[P θ]s,s′ =





θs,a1 if s′ = si+1 and s = si with 1 ≤ i ≤ H
1− θs,a1 if s′ = si−1 and s = si with 1 ≤ i ≤ H

1 if s′ = s1 and s = s0
1 if s′ = s = sH+1

0 otherwise

. (27)
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With this definition, we recall that the value function in the initial state s0 is given by

V πθ(s0) = Eτ∼πθ
[

∞∑

t=0

γtrt] = eT0 (I − γP θ)−1r,

where e0 is an indicator vector for the starting state s0. From the form of the transition probabil-

ities (27), it is clear that the value function only depends on the parameters θs,a1 in any state s.

While care is needed for derivatives as the parameters across actions are related by the simplex

feasibility constraints, we have assumed each parameter is strictly positive, so that an infinitesimal

change to any parameter other than θs,a1 does not affect the policy value and hence the policy gra-

dients. With this understanding, we succinctly refer to θs,a1 as θs in any state s. We also refer to

the state si simply as i to reduce subscripts.

For convenience, we also define p̄ (resp. p) to be the largest (resp. smallest) of the probabilities

θs across the states s ∈ [1, H ] in the MDP.

In this section, we prove Proposition 4.1, that is: for 0 < θ < 1 (componentwise across

states and actions), p̄ ≤ 1/4, and for all k ≤ H
40 log(2H)

− 1, we have ‖∇k
θV

πθ(s0)‖ ≤ (1/3)H/4,

where ∇k
θV

πθ(s0) is a tensor of the kth order. Furthermore, we seek to show V ⋆(s0)− V πθ(s0) ≥
(H + 1)/8− (H + 1)2/3H (where θ⋆ are the optimal policy’s parameters).

It is easily checked that V πθ(s0) = Mθ
0,H+1, where

Mθ := (I − γP θ)−1,

since the only rewards are obtained in the state sH+1. In order to bound the derivatives of the

expected reward, we first establish some properties of the matrix Mθ.

Lemma B.1. Suppose p̄ ≤ 1/4. Fix any α ∈
[
1−
√

1−4γ2p̄(1−p)

2γ(1−p)
,max

{
1+
√

1−4γ2p̄(1−p)

2γ(1−p)
, 1

}]
. Then

1. Mθ
a,b ≤ αb−a−1

1−γ
for 0 ≤ a ≤ b ≤ H .

2. Mθ
a,H+1 ≤ γp̄

1−γ
Mθ

a,H ≤ γp̄
(1−γ)2

αH−a for 0 ≤ a ≤ H .

Proof: Let ρka,b be the normalized discounted probability of reaching b, when the initial state is

a, in k steps, that is

ρka,b := (1− γ)

k∑

i=0

[(γP θ)i]a,b, (28)

where we recall the convention that U0 is the identity matrix for any square matrix U . Observe that

0 ≤ ρka,b ≤ 1, and, based on the form (27) of P θ, we have the recursive relation for all k > 0:

ρka,b =





γ(1− θb+1)ρ
k−1
a,b+1 + γθb−1 ρ

k−1
a,b−1 if 1 < b < H

γθH−1ρ
k−1
a,H−1 if b = H

γθHρ
k−1
a,H + γρk−1

a,H+1 if b = H + 1 and a < H + 1
1− γ if b = H + 1 and a = H + 1

γ(1− θ2)ρ
k−1
a,2 + γ ρk−1

a,0 if b = 0

. (29)
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Note that ρ0a,b = 0 for a 6= b and ρ0a,b = 1 − γ for a = b. Now let us inductively prove that for all

k ≥ 0
ρka,b ≤ αb−a for 1 ≤ a ≤ b ≤ H. (30)

Clearly this holds for k = 0 since ρ0a,b = 0 for a 6= b and ρ0a,b = 1 − γ for a = b. Now, assuming

the bound for all steps till k − 1, we now prove it for k case by case.

For a = b the result follows since

ρka,b ≤ 1 = αb−a.

For 1 < b < H and a < b, observe that the recursion (29) and the inductive hypothesis imply

that

ρka,b ≤ γ(1− θb+1)α
b+1−a + γθb−1 α

b−1−a

= αb−a−1
(
γ(1− θb+1)α

2 + γθb−1

)

≤ αb−a−1
(
γ(1− p)α2 + γp̄

)

= αb−a−1
(
α+ γ(1− p)α2 − α + γp̄

)
≤ αb−a,

where the last inequality follows since α2γ(1− p)− α + γp̄ ≤ 0 due to that α is within the roots

of this quadratic equation. Note the discriminant term in the square root is non-negative provided

p̄ < 1/4, since the condition along with the knowledge that p ≤ p̄ ensures that 4γ2p̄(1− p) ≤ 1.

For b = H and a < H , we observe that

ρka,b ≤ γθH−1 α
H−1−a

= αH−aγθH−1

α

≤ αH−a(
γp̄

α
) ≤ αH−a

(
γ(1− p)α +

γp̄

α

)
≤ αH−a.

This proves the inductive claim (note that the cases of b = a = 1 and b = a = H are already

handled in the first part above). Next, we prove that for all k ≥ 0

ρk0,b ≤ αb−1.

Clearly this holds for k = 0 and b 6= 0 since ρ00,b = 0. Furthermore, for all k ≥ 0 and b = 0,

ρk0,b ≤ 1 ≤ αb−1,

since α ≤ 1 by construction and b = 0. Now, we consider the only remaining case when k > 0
and b ∈ [1, H + 1]. By (27), observe that for k > 0 and b ∈ [1, H + 1],

[(P θ)i]0,b = [(P θ)i−1]1,b, (31)
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for all i ≥ 1. Using the definition of ρka,b (28) for k > 0 and b ∈ [1, H + 1],

ρk0,b = (1− γ)

k∑

i=0

[(γP θ)i]0,b = (1− γ)[(γP θ)0]0,b + (1− γ)

k∑

i=1

[(γP θ)i]0,b

= 0 + (1− γ)

k∑

i=1

γi[(P θ)i]0,b (since b ≥ 1)

= (1− γ)
k∑

i=1

γi
[
(P θ)i−1

]
1,b

(using Equation (31))

= (1− γ)γ
k−1∑

j=0

γj [(P θ)j ]1,b (By substituting j = i− 1)

= γρk−1
1,b (using Equation (28))

≤ αb−1 (using Equation (30) and γ, α ≤ 1)

Hence, for all k ≥ 0
ρk0,b ≤ αb−1

In conjunction with Equation (30), the above display gives for all k ≥ 0,

ρka,b ≤ αb−a for 1 ≤ a ≤ b ≤ H

ρka,b ≤ αb−a−1 for 0 = a ≤ b ≤ H

Also observe that

Mθ
a,b = lim

k→∞

ρka,b
1− γ

.

Since the above bound holds for all k ≥ 0, it also applies to the limiting value Mθ
a,b, which shows

that

Mθ
a,b ≤

αb−a

1− γ
≤ αb−a−1

1− γ
for 1 ≤ a ≤ b ≤ H

Mθ
a,b ≤

αb−a−1

1− γ
for 0 = a ≤ b ≤ H

which completes the proof of the first part of the lemma.

For the second claim, from recursion (29) and b = H + 1 and a < H + 1

ρka,H+1 = γθHρ
k−1
a,H + γρk−1

a,H+1 ≤ γp̄ρk−1
a,H + γρk−1

a,H+1,

Taking the limit of k →∞, we see that

Mθ
a,H+1 ≤ γp̄Ma,H + γMθ

a,H+1.

Rearranging the terms in the above bound yields the second claim in the lemma.

Using the lemma above, we now bound the derivatives of Mθ.
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Lemma B.2. The kth order partial derivatives of M satisfy:

∣∣∣∣∣
∂kMθ

0,H+1

∂θβ1 . . . ∂θβk

∣∣∣∣∣ ≤
p̄ 2k γk+1 k!αH−2k

(1− γ)k+2
.

where β denotes a k dimensional vector with entries in {1, 2, . . . , H}.

Proof: Since the parameter θ is fixed throughout, we drop the superscript in Mθ for brevity.

Using∇θM = −M∇θ(I − γP θ)M , using the form of P θ in (27), we get for any h ∈ [1, H ]

−∂Ma,b

∂θh
= −γ

H+1∑

i,j=0

Ma,i
∂Pi,j

∂θh
Mj,b = γMa,h(Mh−1,b −Mh+1,b) (32)

where the second equality follows since Ph,h+1 = θh and Ph,h−1 = 1− θh are the only two entries

in the transition matrix which depend on θh for h ∈ [1, H ].

Next, let us consider a kth order partial derivative of M0,H+1, denoted as
∂kM0,H+1

∂θβ
. Note that

β can have repeated entries to capture higher order derivative with respect to some parameter. We

prove by induction for all k ≥ 1, −∂kM0,H+1

∂θβ
can be written as

∑N
n=1 cnζn where

1. |cn| = γk and N ≤ 2kk!,

2. Each monomial ζn is of the form Mi1,j1 . . .Mik+1,jk+1
, i1 = 0, jk+1 = H + 1, jl ≤ Hand

il+1 = jl ± 1 for all l ∈ [1, k].

The base case k = 1 follows from Equation (32), as we can write for any h ∈ [H ]

−∂M0,H+1

∂θh
= γM0,hMh−1,H+1 − γM0,hMh+1,H+1

Clearly, the induction hypothesis is true with |cn| = γ, N = 2, i1 = 0, j2 = H + 1, j1 ≤ H and

i2 = j1 ± 1. Now, suppose the claim holds till k − 1. Then by the chain rule:

∂kM0,H+1

∂θβ1 . . . ∂θβk

=
∂
∂k−1M0,H+1

∂θ
β/1

∂θβ1

,

where β/i is the vector β with the ith entry removed. By inductive hypothesis,

−∂
k−1M0,H+1

∂θβ/1

=

N∑

n=1

cnζn

where

1. |cn| = γk−1 and N ≤ 2k−1(k − 1)!,
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2. Each monomial ζn is of the form Mi1,j1 . . .Mik,jk , i1 = 0, jk = H + 1, jl ≤ H and

il+1 = jl ± 1 for all l ∈ [1, k − 1].

In order to compute the (k)th derivative of M0,H+1, we have to compute derivative of each mono-

mial ζn with respect to θβ1 . Consider one of the monomials in the (k − 1)th derivative, say,

ζ = Mi1,j1 . . .Mik,jk . We invoke the chain rule as before and replace one of the terms in ζ , say

Mim,jm , with γMim,β1Mβ1−1,jm − γMim,β1Mβ1+1,jm using Equation 32. That is, the derivative of

each entry gives rise to two monomials and therefore derivative of ζ leads to 2k monomials which

can be written in the form ζ ′ = Mi′1,j
′
1
. . .Mi′k+1,j

′
k+1

where we have the following properties (by

appropriately reordering terms)

1. i′l, j
′
l = il, jl for l < m

2. i′l, j
′
l = il−1, jl−1 for l > m+ 1

3. i′m, j
′
m = im, β1 and i′m+1, j

′
m+1 = jm ± 1, jm

Using the induction hypothesis, we can write

− ∂kM0,H+1

∂θβ1 . . . ∂θβk

=
N ′∑

n=0

c′nζ
′
n

where

1. |c′n| = γ|cn| = γk, since as shown above each coefficient gets multiplied by ±γ.

2. N ′ ≤ 2k2k−1(k−1)! = 2kk!, since as shown above each monomial ζ leads to 2k monomials

ζ ′.

3. Each monomial ζ ′n is of the form Mi1,j1 . . .Mik+1,jk+1
, i1 = 0, jk+1 = H + 1, jl ≤ H and

il+1 = jl ± 1 for all l ∈ [1, k].

This completes the induction.

Next we prove a bound on the magnitude of each of the monomials which arise in the deriva-

tives of M0,H+1. Specifically, we show that for each monomial ζ = Mi1,j1 . . .Mik+1,jk+1
, we have

∣∣Mi1,j1 . . .Mik+1,jk+1

∣∣ ≤ γp̄αH−2k

(1− γ)k+2
(33)

We observe that it suffices to only consider pairs of indices il, jl where il < jl. Since |Mi,j| ≤ 1
1−γ

for all i, j,
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∣∣∣∣∣
k+1∏

l=1

Mi′l,j
′
l

∣∣∣∣∣ ≤

∣∣∣∣∣∣
∏

1≤l≤k : i′l<j′l

Mi′l,j
′
l

∣∣∣∣∣∣

∣∣∣∣∣∣
∏

1≤l≤k : i′l≥j′l

1

1− γ

∣∣∣∣∣∣

∣∣∣Mi′k+1,j
′
k+1

∣∣∣

=

∣∣∣∣∣∣
∏

1≤l≤k : i′l<j′l

Mi′l,j
′
l

∣∣∣∣∣∣

∣∣∣∣∣∣
∏

1≤l≤k : i′l≥j′l

1

1− γ

∣∣∣∣∣∣

∣∣∣Mi′k+1,H+1

∣∣∣

(by the inductive claim shown above)

≤ α
∑

{1≤l≤k : i′
l
<j′

l
} j′l−i′l−1

(1− γ)k
γp̄αH−i′k+1

(1− γ)2

(using Lemma B.1, parts 1 and 2 on the first and last terms resp.)

=
γp̄α

∑
{1≤l≤k+1 : i′

l
<j′

l
} j′l−i′l−1

(1− γ)k+2
(34)

The last step follows from H + 1 = j′k+1 ≥ i′k+1. Note that

∑

{1≤l≤k+1 : i′l<j′l}
j′l − i′l ≥

k+1∑

l=1

j′l − i′l = j′k+1 − i′1 +

k∑

l=1

(j′l+1 − i′l) ≥ H + 1− k ≥ 0

where the first inequality follows from adding only non-positive terms to the sum, the second

equality follows from rearranging terms and the third inequality follows from i′1 = 0, j′k+1 = H+1
and i′l+1 = j′l ± 1 for all l ∈ [1, k]. Therefore,

∑

{1≤l≤k+1 : i′l<j′l}
j′l − i′l − 1 ≥ H − 2k

Using Equation (34) and α ≤ 1 with above display gives

∣∣∣∣∣
k+1∏

l=1

Mi′l,j
′
l

∣∣∣∣∣ ≤
γp̄αH−2k

(1− γ)k+2

This proves the bound. Now using the claim that

∂kM0,H+1

∂θβ
=

N∑

n=1

cnζn

where |cn| = γk and N ≤ 2kk!, we have shown that

∣∣∣∣
∂kM0,H+1

∂θβ

∣∣∣∣ ≤
p̄ 2k γk+1 k!αH−2k

(1− γ)k+2
,

which completes the proof.
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We are now ready to prove Proposition 4.1.

Proof:[Proof of Proposition 4.1] The kth order partial derivative of V πθ(s0) is equal to

∂kV πθ(s0)

∂θβ1 . . . ∂θβh

=
∂kMθ

0,H+1

∂θβ1 . . . ∂θβk

.

Given vectors u1, . . . , uk which are unit vectors in R
Hk

(we denote the unit sphere by S
Hk

), the

norm of this gradient tensor is given by:

‖∇k
θV

πθ(s0)‖ = max
u1,...,uk∈SHk

∣∣∣∣∣∣
∑

β∈[H]k

∂kV πθ(s0)

∂θβ1 . . . ∂θβk

u1
β1
. . . uk

βk

∣∣∣∣∣∣

≤ max
u1,...,uk∈SHk

√√√√
∑

β∈[H]k

(
∂kV πθ(s0)

∂θβ1 . . . ∂θβk

)2√ ∑

β∈[H]k

(
u1
β1
. . . uk

βk

)2

= max
u1,...,uk∈SHk

√√√√
∑

β∈[H]k

(
∂kV πθ(s0)

∂θβ1 . . . ∂θβk

)2

√√√√
k∏

i=1

‖ui‖22

=

√√√√
∑

β∈[H]k

(
∂kV πθ(s0)

∂θβ1 . . . ∂θβk

)2

=

√√√√
∑

β∈[H]k

(
∂kMθ

0,H+1

∂θβ1 . . . ∂θβk

)2

≤
√

Hkp̄2 22k γ2k+2 (k!)2 α2H−4k

(1− γ)2k+4
,

where the last inequality follows from Lemma B.2. In order to proceed further, we need an upper

bound on the smallest admissible value of α. To do so, let us consider all possible parameters θ
such that p̄ ≤ 1/4 in accordance with the theorem statement. In order to bound α, it suffices to

place an upper bound on the lower end of the range for α in Lemma B.1 (note Lemma B.1 holds

for any choice of α in the range). Doing so, we see that

1−
√

1− 4γ2p̄(1− p)

2γ(1− p)
≤

1− 1 + 2γ
√

p̄(1− p)

2γ(1− p)

=

√
p̄

1− p
≤
√

4p̄

3
,

where the first inequality uses
√
x− y ≥ √x−√y, by triangle inequality while the last inequality

uses p ≤ p̄ ≤ 1/4.
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Hence, we have the bound

max
u1,...,uk∈SHk

∣∣∣∣∣∣
∑

β∈[H]h

∂kV πθ(s0)

∂θβ1 . . . ∂θβk

u1
β1
. . . uk

βk

∣∣∣∣∣∣
≤
√

Hkp̄2 22k γ2k+2 (k!)2 (4p̄
3
)H−2k

(1− γ)2k+4

(a)

≤
√

(H + 1)2k+4Hkp̄2 22k γ2k+2 (k!)2 (4p̄
3
)H−2k

(b)

≤
√
(2H)2k+4Hk 22k (H)2k (4p̄

3
)H−2k

=
√
(2)4k+4(H)5k+4 (4p̄

3
)H−2k

where (a) uses γ = H/(H + 1), (b) follows since p̄ ≤ 1, H, k ≥ 1, γ ≤ 1 and k ≤ H .

Requiring that the gradient norm be no larger than (4p̄
3
)H/4, we would like to satisfy

(2)4k+4(H)5k+4 (
4p̄

3
)H−2k ≤ (

4p̄

3
)H/2,

for which it suffices to have

k ≤ k0 :=
H
2
log(3/4p̄)− log(24H4)

log(24H5) + 2 log(3/4p̄)
.

Since,

H
2
log(3/4p̄)− log(24H4)

log(24H5) + 2 log(3/4p̄)

(a)

≥
H
2
log(3/4p̄)− log(24H4)

2 log(24H5)2 log(3/4p̄)

≥ H

8 log(24H5)
− log(24H4)

4 log(24H5) log(3/4p̄)
(b)

≥ H

8 log(24H5)
− log(24H4)

4 log(24H4) log(3)

≥ H

40 log(2H)
− 1

where (a) follows from a+b ≤ 2ab when a, b ≥ 1, (b) follows from H ≥ 1 and p̄ ≤ 1/4. Therefore,

in order to obtain the smallest value of k0 for all choices of 0 ≤ p̄ < 1/4, we further lower bound

k0 as

k0 ≥
H

40 log(2H)
− 1,

Thus, the norm of the gradient is bounded by (4p̄
3
)H/4 ≤ (1/3)H/4 for all k ≤ H

40 log(2H)
− 1 as long

as p̄ ≤ 1/4, which gives the first part of the lemma.
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For the second part, note that the optimal policy always chooses the action a1, and gets a

discounted reward of

γH+2/(1− γ) = (H + 1)

(
1− 1

H + 1

)H+2

≥ H + 1

8
,

where the final inequality uses (1 − 1/x)x ≥ 1/8 for x ≥ 1. On the other hand, the value of πθ is

upper bounded by

M0,H+1 ≤
γp̄αH

(1− γ)2
≤ γp̄

(1− γ)2

(
4p̄

3

)H

≤ (H + 1)2

3H
.

This gives the second part of the lemma.

C Proofs for Section 5

We first give a useful lemma about the structure of policy gradients for the softmax parameteriza-

tion. We use the notation Prπ(τ |s0 = s) to denote the probability of observing a trajectory τ when

starting in state s and following the policy π and Prπµ(τ) be Es∼µ[Pr
π(τ |s0 = s)] for a distribution

µ over states.

Lemma C.1. For the softmax policy class, we have:

∂V πθ(µ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a)

Proof: First note that

∂ log πθ(a|s)
∂θs′,a′

= 1

[
s = s′

](
1

[
a = a′

]
− πθ(a

′|s)
)

(35)

where 1|E ] is the indicator of E being true.

Using this along with the policy gradient expression (6), we have:

∂V πθ(µ)

∂θs,a
= Eτ∼Pr

πθ
µ

[ ∞∑

t=0

γt
1[st = s]

(
1[at = a]Aπθ(s, a)− πθ(a|s)Aπθ(st, at)

)]

= Eτ∼Pr
πθ
µ

[ ∞∑

t=0

γt
1[(st, at) = (s, a)]Aπθ(s, a)

]

− πθ(a|s)
∞∑

t=0

γt
Eτ∼Pr

πθ
µ
[1[st = s]Aπθ(st, at)]

=
1

1− γ
Es′∼d

πθ
µ
Ea′∼πθ(·|s)

[
1[(s′, a′) = (s, a)]Aπθ(s, a)

]
− 0

=
1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ(s, a) ,
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where the second to last step uses that for any policy
∑

a π(a|s)Aπ(s, a) = 0.

C.1 Proofs for Section 5.1

We now prove Theorem 5.1, i.e. we show that for the updates given by

θ(t+1) = θ(t) + η∇V (t)(µ), (36)

policy gradient converges to optimal policy for the softmax parameterization.

We prove this theorem by first proving a series of supporting lemmas. First, we show in Lemma

C.2, that V (t)(s) is monotonically increasing for all states s using the fact that for appropriately

chosen stepsizes GD makes monotonic improvement for smooth objectives.

Lemma C.2 (Monotonic Improvement in V (t)(s)). For all states s and actions a, for updates (36)

with learning rate η ≤ (1−γ)2

5
, we have

V (t+1)(s) ≥ V (t)(s); Q(t+1)(s, a) ≥ Q(t)(s, a).

Proof: The proof will consist of showing that:

∑

a∈A
π(t+1)(a|s)A(t)(s, a) ≥

∑

a∈A
π(t)(a|s)A(t)(s, a) = 0. (37)

holds for all states s. To see this, observe that since the above holds for all states s′, the performance

difference lemma (Lemma 3.2) implies

V (t+1)(s)− V (t)(s) =
1

1− γ
E
s′∼dπ

(t+1)
s

Ea∼π(t+1)(·|s′)
[
A(t)(s′, a)

]
≥ 0,

which would complete the proof.

Let us use the notation θs ∈ R
|A| to refer to the vector of θs,· for some fixed state s. Define the

function

Fs(θs) :=
∑

a∈A
πθs(a|s)c(s, a) (38)

where c(s, a) is constant, which we later set to be A(t)(s, a); note we do not treat c(s, a) as a

function of θ. Thus,

∂Fs(θs)

∂θs,a

∣∣∣
θ
(t)
s

=
∑

a′∈A

∂πθs(a
′|s)

∂θs,a

∣∣∣
θ
(t)
s

c(s, a′)

= π(t)(a|s)(1− π(t)(a|s))c(s, a)−
∑

a′ 6=a

π(t)(a|s)π(t)(a′|s)c(s, a′)

= π(t)(a|s)
(
c(s, a)−

∑

a′∈A
π(t)(a′|s)c(s, a′)

)
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Taking c(s, a) to be A(t)(s, a) implies
∑

a′∈A π(t)(a′|s)c(s, a′) =∑a′∈A π(t)(a′|s)A(t)(s, a′) = 0,

∂Fs(θs)

∂θs,a

∣∣∣
θ
(t)
s

= π(t)(a|s)A(t)(s, a) (39)

Observe that for the softmax parameterization,

θ(t+1)
s = θ(t)s + η∇sV

(t)(µ)

where ∇s is gradient w.r.t. θs and from Lemma C.1 that:

∂V (t)(µ)

∂θs,a
=

1

1− γ
dπ

(t)

µ (s)π(t)(a|s)A(t)(s, a)

This gives using Equation (39)

θ(t+1)
s = θ(t)s + η

1

1− γ
dπ

(t)

µ (s)∇sFs(θs)
∣∣∣
θ
(t)
s

Recall that for a β smooth function, gradient ascent will decrease the function value provided that

η ≤ 1/β (Theorem E.1). Because Fs(θs) is β-smooth for β = 5
1−γ

(Lemma D.1 and
∣∣A(t)(s, a)

∣∣ ≤
1

1−γ
), then our assumption that

η ≤ (1− γ)2

5
= (1− γ)β−1

implies that η 1
1−γ

dπ
(t)

µ (s) ≤ 1/β, and so we have

Fs(θ
(t+1)
s ) ≥ Fs(θ

(t)
s )

which implies (37).

Next, we show the limit for iterates V (t)(s) and Q(t)(s, a) exists for all states s and actions a.

Lemma C.3. For all states s and actions a, there exists values V (∞)(s) and Q(∞)(s, a) such that

as t→∞, V (t)(s)→ V (∞)(s) and Q(t)(s, a)→ Q(∞)(s, a). Define

∆ = min
{s,a|A(∞)(s,a)6=0}

|A(∞)(s, a)|

where A(∞)(s, a) = Q(∞)(s, a)− V (∞)(s). Furthermore, there exists a T0 such that for all t > T0,

s ∈ S, and a ∈ A, we have

Q(t)(s, a) ≥ Q(∞)(s, a)−∆/4 (40)

Proof: Observe that Q(t+1)(s, a) ≥ Q(t)(s, a) (by Lemma C.2) and Q(t)(s, a) ≤ 1
1−γ

, therefore

by monotone convergence theorem, Q(t)(s, a) → Q(∞)(s, a) for some constant Q(∞)(s, a). Simi-

larly it follows that V (t)(s)→ V (∞)(s) for some constant V (∞)(s). Due to the limits existing, this

implies we can choose T0, such that the result (40) follows.
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Based on the limits V (∞)(s) and Q(∞)(s, a), define following sets:

Is0 := {a|Q(∞)(s, a) = V (∞)(s)}
Is+ := {a|Q(∞)(s, a) > V (∞)(s)}
Is− := {a|Q(∞)(s, a) < V (∞)(s)} .

In the following lemmas C.5- C.11, we first show that probabilities π(t)(a|s) → 0 for actions

a ∈ Is+ ∪ Is− as t → ∞. We then show that for actions a ∈ Is−, limt→∞ θ
(t)
s,a = −∞ and for all

actions a ∈ Is+, θ(t)(a|s) is bounded from below as t→∞.

Lemma C.4. We have that there exists a T1 such that for all t > T1, s ∈ S, and a ∈ A, we have

A(t)(s, a) < −∆
4

for a ∈ Is−; A(t)(s, a) >
∆

4
for a ∈ Is+ (41)

Proof: Since, V (t)(s)→ V (∞)(s), we have that there exists T1 > T0 such that for all t > T1,

V (t)(s) > V (∞)(s)− ∆

4
. (42)

Using Equation (40), it follows that for t > T1 > T0, for a ∈ Is−

A(t)(s, a) = Q(t)(s, a)− V (t)(s)

≤ Q(∞)(s, a)− V (t)(s)

≤ Q(∞)(s, a)− V (∞)(s) + ∆/4 (Equation (42))

≤ −∆+∆/4 (definition of Is− and Lemma C.3)

< −∆/4

Similarly A(t)(s, a) = Q(t)(s, a)− V (t)(s) > ∆/4 for a ∈ Is+ as

A(t)(s, a) = Q(t)(s, a)− V (t)(s)

≥ Q(∞)(s, a)−∆/4− V (t)(s) (Lemma C.3)

≥ Q(∞)(s, a)− V (∞)(s)−∆/4 (V (∞)(s) ≥ V (t)(s) from Lemma C.2)

≥ ∆−∆/4

> ∆/4

which completes the proof.

Lemma C.5.
∂V (t)(µ)
∂θs,a

→ 0 as t→∞ for all states s and actions a. This implies that for a ∈ Is+∪Is−,

π(t)(a|s)→ 0 and that
∑

a∈Is0
π(t)(a|s)→ 1.
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Proof: Because V πθ(µ) is smooth (Lemma D.4) as a function of θ, it follows from standard

optimization results (Theorem E.1) that
∂V (t)(µ)
∂θs,a

→ 0 for all states s and actions a. We have from

Lemma C.1
∂V (t)(µ)

∂θs,a
=

1

1− γ
dπ

(t)

µ (s)π(t)(a|s)A(t)(s, a).

Since, |A(t)(s, a)| > ∆
4

for all t > T1 (from Lemma C.4) for all a ∈ Is−∪Is+ and dπ
(t)

µ (s) ≥ µ(s)
1−γ

> 0

(using the strict positivity of µ in our assumption in Theorem 5.1), we have π(t)(a|s)→ 0.

Lemma C.6. (Monotonicity in θ
(t)
s,a). For all a ∈ Is+, θ

(t)
s,a is strictly increasing for t ≥ T1. For all

a ∈ Is−, θ
(t)
s,a is strictly decreasing for t ≥ T1.

Proof: We have from Lemma C.1

∂V (t)(µ)

∂θs,a
=

1

1− γ
dπ

(t)

µ (s)π(t)(a|s)A(t)(s, a)

From Lemma C.4, we have for all t > T1

A(t)(s, a) > 0 for a ∈ Is+; A(t)(s, a) < 0 for a ∈ Is−

Since dπ
(t)

µ (s) > 0 and π(t)(a|s) > 0 for the softmax parameterization, we have for all t > T1

∂V (t)(µ)

∂θs,a
> 0 for a ∈ Is+;

∂V (t)(µ)

∂θs,a
< 0 for a ∈ Is−

This implies for all a ∈ Is+, θ
(t+1)
s,a − θ

(t)
s,a = ∂V (t)(µ)

∂θs,a
> 0 i.e. θ

(t)
s,a is strictly increasing for t ≥ T1.

The second claim follows similarly.

Lemma C.7. For all s where Is+ 6= ∅, we have that:

max
a∈Is0

θ(t)s,a →∞, min
a∈A

θ(t)s,a → −∞

Proof: Since Is+ 6= ∅, there exists some action a+ ∈ Is+. From Lemma C.5,

π(t)(a+|s)→ 0, as t→∞

or equivalently by softmax parameterization,

exp(θ
(t)
s,a+)∑

a exp(θ
(t)
s,a)
→ 0, as t→∞

From Lemma C.6, for any action a ∈ Is+ and in particular for a+, θ
(t)
s,a+ is monotonically increasing

for t > T1. That is the numerator in previous display is monotonically increasing. Therefore, the

denominator should go to infinity i.e.

∑

a

exp(θ(t)s,a)→∞, as t→∞.
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From Lemma C.5, ∑

a∈Is0

π(t)(a|s)→ 1, as t→∞

or equivalently ∑
a∈Is0

exp(θ
(t)
s,a)

∑
a exp(θ

(t)
s,a)

→ 1, as t→∞

Since, denominator goes to∞,

∑

a∈Is0

exp(θ(t)s,a)→∞, as t→∞

which implies

max
a∈Is0

θ(t)s,a →∞, as t→∞

Note this also implies maxa∈A θ
(t)
s,a → ∞. The last part of the proof is completed using that the

gradients sum to 0, i.e.
∑

a
∂V (t)(µ)
∂θs,a

= 0. From gradient sum to 0, we get that
∑

a∈A θ
(t)
s,a =

∑
a∈A θ

(0)
s,a := c for all t > 0 where c is defined as the sum (over A) of initial parameters. That is

mina∈A θ
(t)
s,a < − 1

|A| maxa∈A θ
(t)
s,a + c. Since, maxa∈A θ

(t)
s,a →∞, the result follows.

Lemma C.8. Suppose a+ ∈ Is+. For any a ∈ Is0 , if there exists a t ≥ T0 such that π(t)(a|s) ≤
π(t)(a+|s), then for all τ ≥ t, π(τ)(a|s) ≤ π(τ)(a+|s).

Proof: The proof is inductive. Suppose π(t)(a|s) ≤ π(t)(a+|s), this implies from Lemma C.1

∂V (t)(µ)

∂θs,a
=

1

1− γ
d(t)µ (s)π(t)(a|s)

(
Q(t)(s, a)− V (t)(s)

)

≤ 1

1− γ
d(t)µ (s)π(t)(a+|s)

(
Q(t)(s, a+)− V (t)(s)

)
=

∂V (t)(µ)

∂θs,a+
.

where the second to last step follows from Q(t)(s, a+) ≥ Q(∞)(s, a+)−∆/4 ≥ Q(∞)(s, a) +∆−
∆/4 > Q(t)(s, a) for t > T0. This implies that π(t+1)(a|s) ≤ π(t+1)(a+|s) which completes the

proof.

Consider an arbitrary a+ ∈ Is+. Let us partition the set Is0 into Bs
0(a+) and B̄s

0(a+) as follows:

Bs
0(a+) is the set of all a ∈ Is0 such that for all t ≥ T0, π(t)(a+|s) < π(t)(a|s), and B̄s

0(a+) contains

the remainder of the actions from Is0 . We drop the argument (a+) when clear from the context.

Lemma C.9. Suppose Is+ 6= ∅. For all a+ ∈ Is+, we have that Bs
0(a+) 6= ∅ and that

∑

a∈Bs
0(a+)

π(t)(a|s)→ 1, as t→∞.

This implies that:

max
a∈Bs

0(a+)
θ(t)s,a →∞.
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Proof: Let a+ ∈ Is+. Consider any a ∈ B̄s
0. Then, by definition of B̄s

0, there exists t′ > T0 such

that π(t)(a+|s) ≥ π(t)(a|s). From Lemma C.8, for all τ > t π(τ)(a+|s) ≥ π(τ)(a|s). Also, since

π(t)(a+|s)→ 0, this implies

π(t)(a|s)→ 0 for all a ∈ B̄s
0

Since, Bs
0 ∪ B̄s

0 = Is0 and
∑

a∈Is0
π(t)(a|s) → 1 (from Lemma C.5), this implies that Bs

0 6= ∅ and

that means ∑

a∈Bs
0

π(t)(a|s)→ 1, as t→∞,

which completes the proof of the first claim. The proof of the second claim is identical to the proof

in Lemma C.7 where instead of
∑

a∈Is0
π(t)(a|s)→ 1, we use

∑
a∈Bs

0
π(t)(a|s)→ 1.

Lemma C.10. Consider any s where Is+ 6= ∅. Then, for any a+ ∈ Is+, there exists an iteration Ta+

such that for all t > Ta+ ,

π(t)(a+|s) > π(t)(a|s)
for all a ∈ B̄s

0(a+).

Proof: The proof follows from definition of B̄s
0(a+). That is if a ∈ B̄s

0(a+), then there exists

a iteration ta > T0 such that π(ta)(a+|s) > π(ta)(a|s). Then using Lemma C.8, for all τ > ta,

π(τ)(a+|s) > π(τ)(a|s). Choosing

Ta+ = max
a∈Bs

0(a+)
ta

completes the proof.

Lemma C.11. For all actions a ∈ Is+, we have that θ
(t)
s,a is bounded from below as t→∞. For all

actions a ∈ Is−, we have that θ
(t)
s,a → −∞ as t→∞.

Proof: For the first claim, from Lemma C.6, we know that after T1, θ
(t)
s,a is strictly increasing

for a ∈ Is+, i.e. for all t > T1

θ(t)s,a ≥ θ(T1)
s,a .

For the second claim, we know that after T1, θ
(t)
s,a is strictly decreasing for a ∈ Is− (Lemma C.6).

Therefore, by monotone convergence theorem, limt→∞ θ
(t)
s,a exists and is either −∞ or some con-

stant θ0. We now prove the second claim by contradiction. Suppose a ∈ Is− and that there exists a

θ0, such that θ
(t)
s,a > θ0, for t ≥ T1. By Lemma C.7, there must exist an action where a′ ∈ A such

that

lim inf
t→∞

θ
(t)
s,a′ = −∞. (43)

Let us consider some δ > 0 such that θ
(T1)
s,a′ ≥ θ0 − δ. Now for t ≥ T1 define τ(t) as follows:

τ(t) = k if k is the largest iteration in the interval [T1, t] such that θ
(k)
s,a′ ≥ θ0 − δ (i.e. τ(t) is

the latest iteration before θs,a′ crosses below θ0 − δ). Define T (t) as the subsequence of iterations

τ(t) < t′ < t such that θ
(t′)
s,a′ decreases, i.e.

∂V (t′)(µ)

∂θs,a′
≤ 0, for τ(t) < t′ < t.
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Define Zt as the sum (if T (t) = ∅, we define Zt = 0):

Zt =
∑

t′∈T (t)

∂V (t′)(µ)

∂θs,a′
.

For non-empty T (t), this gives:

Zt =
∑

t′∈T (t)

∂V (t′)(µ)

∂θs,a′
≤

t−1∑

t′=τ(t)−1

∂V (t′)(µ)

∂θs,a′
≤

t−1∑

t′=τ(t)

∂V (t′)(µ)

∂θs,a′
+

1

1− γ2

=
1

η
(θ

(t)
s,a′ − θ

(τ(t))
s,a′ ) +

1

1− γ2
≤ 1

η

(
θ
(t)
s,a′ − (θ0 − δ)

)
+

1

1− γ2
,

where we have used that |∂V (t′)(µ)
∂θs,a′

| ≤ 1/(1− γ). By (43), this implies that:

lim inf
t→∞

Zt = −∞.

For any T (t) 6= ∅, this implies that for all t′ ∈ T (t), from Lemma C.1

∣∣∣∣
∂V (t′)(µ)/∂θs,a
∂V (t′)(µ)/∂θs,a′

∣∣∣∣ =
∣∣∣∣
π(t′)(a|s)A(t′)(s, a)

π(t′)(a′|s)A(t′)(s, a′)

∣∣∣∣ ≥ exp
(
θ0 − θ

(t′)
s,a′

)(1− γ)∆

4

≥ exp
(
δ
)(1− γ)∆

4

where we have used that |A(t′)(s, a′)| ≤ 1/(1 − γ) and |A(t′)(s, a)| ≥ ∆
4

for all t′ > T1 (from

Lemma C.4). Note that since
∂V (t′)(µ)

∂θs,a
< 0 and

∂V (t′)(µ)
∂θs,a′

< 0 over the subsequence T (t), the sign of

the inequality reverses. In particular, for any T (t) 6= ∅

1

η
(θ(T1)

s,a − θ(t)s,a) =

t−1∑

t′=T1

∂V (t′)(µ)

∂θs,a
≤
∑

t′∈T (t)

∂V (t′)(µ)

∂θs,a

≤ exp
(
δ
)(1− γ)∆

4

∑

t′∈T (t)

∂V (t′)(µ)

∂θs,a′

= exp
(
δ
)(1− γ)∆

4
Zt

where the first step follows from that θ
(t)
s,a is monotonically decreasing, i.e.

∂V (t)(µ)
∂θs,a

< 0 for t /∈ T
(Lemma C.6). Since,

lim inf
t→∞

Zt = −∞,

this contradicts that θ
(t)
s,a is lower bounded from below, which completes the proof.
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Lemma C.12. Consider any s where Is+ 6= ∅. Then, for any a+ ∈ Is+,

∑

a∈Bs
0(a+)

θ(t)s,a →∞, as t→∞

Proof: Consider any a ∈ Bs
0. We have by definition of Bs

0 that π(t)(a+|s) < π(t)(a|s) for

all t > T0. This implies by the softmax parameterization that θ
(t)
s,a+ < θ

(t)
s,a. Since, θ

(t)
s,a+ is lower

bounded as t → ∞ (using Lemma C.11), this implies θ
(t)
s,a is lower bounded as t → ∞ for all

a ∈ Bs
0. This in conjunction with maxa∈Bs

0(a+) θ
(t)
s,a →∞ implies

∑

a∈Bs
0

θ(t)s,a →∞, (44)

which proves this claim.

We are now ready to complete the proof for Theorem 5.1. We prove it by showing that Is+ is

empty for all states s or equivalently V (t)(s0)→ V ⋆(s0) as t→∞.

Proof:[Proof for Theorem 5.1] Suppose the set Is+ is non-empty for some s, else the proof is

complete. Let a+ ∈ Is+. Then, from Lemma C.12,

∑

a∈Bs
0

θ(t)s,a →∞, (45)

Now we proceed by showing a contradiction. For a ∈ Is−, we have that since
π(t)(a|s)
π(t)(a+|s) =

exp(θ
(t)
s,a − θ

(t)
s,a+) → 0 (as θ

(t)
s,a+ is lower bounded and θ

(t)
s,a → −∞ by Lemma C.11), there exists

T2 > T0 such that
π(t)(a|s)
π(t)(a+|s)

<
(1− γ)∆

16|A|
or, equivalently,

−
∑

a∈Is−

π(t)(a|s)
1− γ

> −π(t)(a+|s)
∆

16
. (46)

For a ∈ B̄s
0, we have A(t)(s, a)→ 0 (by definition of set Is0 and B̄s

0 ⊂ Is0) and 1 < π(t)(a+|s)
π(t)(a|s) for

all t > Ta+ from Lemma C.10. Thus, there exists T3 > T2, Ta+ such that

|A(t)(s, a)| < π(t)(a+|s)
π(t)(a|s)

∆

16|A|

which implies ∑

a∈B̄s
0

π(t)(a|s)|A(t)(s, a)| < π(t)(a+|s)
∆

16
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−π(t)(a+|s)
∆

16
<
∑

a∈B̄s
0

π(t)(a|s)A(t)(s, a) < π(t)(a+|s)
∆

16
(47)

We have for t > T3, from
∑

a∈A π(t)(a|s)A(t)(s, a) = 0,

0 =
∑

a∈Is0

π(t)(a|s)A(t)(s, a) +
∑

a∈Is+

π(t)(a|s)A(t)(s, a) +
∑

a∈Is−

π(t)(a|s)A(t)(s, a)

(a)

≥
∑

a∈Bs
0

π(t)(a|s)A(t)(s, a) +
∑

a∈B̄s
0

π(t)(a|s)A(t)(s, a) + π(t)(a+|s)A(t)(s, a+)

+
∑

a∈Is−

π(t)(a|s)A(t)(s, a)

(b)

≥
∑

a∈Bs
0

π(t)(a|s)A(t)(s, a) +
∑

a∈B̄s
0

π(t)(a|s)A(t)(s, a) + π(t)(a+|s)
∆

4
−
∑

a∈Is−

π(t)(a|s)
1− γ

(c)
>
∑

a∈Bs
0

π(t)(a|s)A(t)(s, a)− π(t)(a+|s)
∆

16
+ π(t)(a+|s)

∆

4
− π(t)(a+|s)

∆

16

>
∑

a∈Bs
0

π(t)(a|s)A(t)(s, a)

where in the step (a), we used A(t)(s, a) > 0 for all actions a ∈ Is+ for t > T3 > T1 from

Lemma C.4. In the step (b), we used A(t)(s, a+) ≥ ∆
4

for t > T3 > T1 from Lemma C.4 and

A(t)(s, a) ≥ − 1
1−γ

. In the step (c), we used Equation (46) and left inequality in (47). This implies

that for all t > T3 ∑

a∈Bs
0

∂V (t)(µ)

∂θs,a
< 0

This contradicts Equation (45) which requires

lim
t→∞

∑

a∈Bs
0

(
θ(t)s,a − θ(T3)

s,a

)
= η

∞∑

t=T3

∑

a∈Bs
0

∂V (t)(µ)

∂θs,a
→∞.

Therefore, the set Is+ must be empty, which completes the proof.

C.2 Proofs for Section 5.2

Proof:[of Corollary 5.1] Using Theorem 5.2, the desired optimality gap ǫ will follow if we set

λ =
ǫ(1− γ)

2
∥∥∥dπ⋆

ρ

µ

∥∥∥
∞

(48)
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and if ‖∇θLλ(θ)‖2 ≤ λ/(2|S| |A|). In order to complete the proof, we need to bound the iteration

complexity of making the gradient sufficiently small.

Since the optimization is deterministic and unconstrained, we can appeal to standard results

(Theorem E.1) which give that after T iterations of gradient ascent with stepsize of 1/βλ, we have

min
t≤T
‖∇θLλ(θ

(t))‖22 ≤
2βλ(Lλ(θ

⋆)− Lλ(θ
(0)))

T
≤ 2βλ

(1− γ) T
, (49)

where βλ is an upper bound on the smoothness of Lλ(θ). We seek to ensure

ǫopt ≤
√

2βλ

(1− γ) T
≤ λ

2|S| |A|

Choosing T ≥ 8βλ |S|2|A|2
(1−γ) λ2 satisfies the above inequality. By Lemma D.4, we can take βλ =

8γ
(1−γ)3

+ 2λ
|S| , and so

8βλ |S|2|A|2
(1− γ) λ2

≤ 64 |S|2|A|2
(1− γ)4 λ2

+
16 |S||A|2
(1− γ) λ

≤ 80 |S|2|A|2
(1− γ)4 λ2

=
320 |S|2|A|2
(1− γ)6 ǫ2

∥∥∥∥∥
dπ

⋆

ρ

µ

∥∥∥∥∥

2

∞

where we have used that λ < 1. This completes the proof.

C.3 Proofs for Section 5.3

Proof:[of Lemma 5.1] Following the definition of compatible function approximation in Sutton et al.

[1999], which was also invoked in Kakade [2001], for a vector w ∈ R
|S||A|, we define the error

function

Lθ(w) = Es∼d
πθ
ρ ,a∼πθ(·|s)(w

⊤∇θ log πθ(·|s)− Aπθ(s, a))2.

Let w⋆
θ be the minimizer of Lθ(w) with the smallest ℓ2 norm. Then by definition of Moore-

Penrose pseudoinverse, it is easily seen that

w⋆
θ = Fρ(θ)

†
Es∼d

πθ
ρ ,a∼πθ(a|s)[∇θ log πθ(a|s)Aπθ(s, a)] = (1− γ)Fρ(θ)

†∇θV
πθ(ρ). (50)

In other words, w⋆
θ is precisely proportional to the NPG update direction. Note further that for the

Softmax policy parameterization, we have by (35),

w⊤∇θ log πθ(a|s) = ws,a −
∑

a′∈A
ws,a′πθ(a

′|s).
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Since
∑

a∈A π(a|s)Aπ(s, a) = 0, this immediately yields that Lθ(Aπθ) = 0. However, this might

not be the unique minimizer of Lθ, which is problematic since w⋆(θ) as defined in terms of the

Moore-Penrose pseudoinverse is formally the smallest norm solution to the least-squares problem,

which Aπθ may not be. However, given any vector v ∈ R
|S||A|, let us consider solutions of the form

Aπθ + v. Due to the form of the derivatives of the policy for the softmax parameterization (recall

Equation 35), we have for any state s, a such that s is reachable under ρ,

v⊤∇θ log πθ(a|s) =
∑

a′∈A
(vs,a′1[a = a′]− vs,a′πθ(a

′|s)) = vs,a −
∑

a′∈A
vs,a′π(a

′|s).

Note that here we have used that πθ is a stochastic policy with πθ(a|s) > 0 for all actions a in each

state s, so that if a state is reachable under ρ, it will also be reachable using πθ, and hence the zero

derivative conditions apply at each reachable state. For Aπθ + v to minimize Lθ, we would like

v⊤∇θ log πθ(a|s) = 0 for all s, a so that vs,a is independent of the action and can be written as a

constant cs for each s by the above equality. Hence, the minimizer of Lθ(w) is determined up to a

state-dependent offset, and

Fρ(θ)
†∇θV

πθ(ρ) =
Aπθ

1− γ
+ v,

where vs,a = cs for some cs ∈ R for each state s and action a. Finally, we observe that this yields

the updates

θ(t+1) = θ(t) +
η

1− γ
A(t) + ηv and π(t+1)(a|s) = π(t)(a|s)exp(ηA

(t)(s, a)/(1− γ) + ηcs)

Zt(s)
.

Owing to the normalization factor Zt(s), the state dependent offset cs cancels in the updates for

π, so that resulting policy is invariant to the specific choice of cs. Hence, we pick cs ≡ 0, which

yields the statement of the lemma.

D Smoothness Proofs

Various convergence guarantees we show leverage results from smooth, non-convex optimization.

In this section, we collect the various results on smoothness of policies and value functions in the

different parameterizations which are needed in our analysis.

Define the Hadamard product of two vectors:

[x⊙ y]i = xiyi

Define diag(x) for a column vector x as the diagonal matrix with diagonal as x.

Lemma D.1 (Smoothness of F (see Equation 38) ). Fix a state s. Let θs ∈ R
|A| be the column

vector of parameters for state s. Let πθ(·|s) be the corresponding vector of action probabilities

given by the softmax parameterization. For some fixed vector c ∈ R
|A|, define:

F (θ) := πθ(·|s) · c =
∑

a

πθ(a|s)ca.
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Then

‖∇θsF (θs)−∇θsF (θ′s)‖2 ≤ β‖θs − θ′s‖2
where

β = 5‖c‖∞.

Proof: For notational convenience, we do not explicitly state the s dependence. For the softmax

parameterization, we have that

∇θπθ = diag(πθ)− πθπ
⊤
θ .

We can then write (as ∇θπθ is symmetric),

∇θ(πθ · c) = (diag(πθ)− πθπ
⊤
θ )c = πθ ⊙ c− (πθ · c)πθ (51)

and therefore

∇2
θ(πθ · c) = ∇θ(πθ ⊙ c− (πθ · c)πθ).

For the first term, we get

∇θ(πθ ⊙ c) = diag(πθ ⊙ c)− πθ(πθ ⊙ c)⊤,

and the second term, we can decompose by chain rule

∇θ((πθ · c)πθ) = (πθ · c)∇θπθ + (∇θ(πθ · c))π⊤
θ

Substituting these back, we get

∇2
θ(πθ · c) = diag(πθ ⊙ c)− πθ(πθ ⊙ c)⊤ − (πθ · c)∇θπθ − (∇θ(πθ · c))π⊤

θ . (52)

Note that

max(‖diag(πθ ⊙ c)‖2 , ‖πθ ⊙ c‖2 , |πθ · c|) ≤ ‖c‖∞
‖∇θπθ‖2 =

∥∥diag(πθ)− πθπ
⊤
θ

∥∥
2
≤ 1

‖∇θ(πθ · c)‖2 ≤ ‖πθ ⊙ c‖2 + ‖(πθ · c)πθ‖2 ≤ 2‖c‖∞,

which gives ∥∥∇2
θ(πθ · c)

∥∥
2
≤ 5‖c‖∞.

Before we prove the smoothness results for∇πV
π(s0) and∇θV

πθ(s0), we prove the following

helpful lemma. This lemma is general and not specific to the direct or softmax policy parameteri-

zations.

Lemma D.2. Let πα := πθ+αu and let Ṽ (α) be the corresponding value at a fixed state s0, i.e.

Ṽ (α) := V πα(s0).
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Assume that

∑

a∈A

∣∣∣∣
dπα(a|s0)

dα

∣∣∣∣
α=0

∣∣∣∣ ≤ C1,
∑

a∈A

∣∣∣∣
d2πα(a|s0)

(dα)2

∣∣∣∣
α=0

∣∣∣∣ ≤ C2

Then

max
‖u‖2=1

∣∣∣∣∣
d2Ṽ (α)

(dα)2

∣∣∣∣
α=0

∣∣∣∣∣ ≤
C2

(1− γ)2
+

2γC2
1

(1− γ)3
.

Proof: Consider a unit vector u and let P̃ (α) be the state-action transition matrix under π, i.e.

[P̃ (α)](s,a)→(s′,a′) = πα(a
′|s′)P (s′|s, a).

We can differentiate P̃ (α) w.r.t α to get
[
dP̃ (α)

dα

∣∣∣∣
α=0

]

(s,a)→(s′,a′)

=
dπα(a

′|s′)
dα

∣∣∣∣
α=0

P (s′|s, a).

For an arbitrary vector x,
[
dP̃ (α)

dα

∣∣∣∣
α=0

x

]

s,a

=
∑

a′,s′

dπα(a
′|s′)

dα

∣∣∣∣
α=0

P (s′|s, a)xa′,s′

and therefore

max
‖u‖2=1

∣∣∣∣∣∣

[
dP̃ (α)

dα

∣∣∣∣
α=0

x

]

s,a

∣∣∣∣∣∣
= max

‖u‖2=1

∣∣∣∣∣
∑

a′,s′

dπα(a
′|s′)

dα

∣∣∣∣
α=0

P (s′|s, a)xa′,s′

∣∣∣∣∣

≤
∑

a′,s′

∣∣∣∣
dπα(a

′|s′)
dα

∣∣∣∣
α=0

∣∣∣∣P (s′|s, a)|xa′,s′|

≤
∑

s′

P (s′|s, a)‖x‖∞
∑

a′

∣∣∣∣
dπα(a

′|s′)
dα

∣∣∣∣
α=0

∣∣∣∣

≤
∑

s′

P (s′|s, a)‖x‖∞C1

≤ C1‖x‖∞.

By definition of ℓ∞ norm,

max
‖u‖2=1

∥∥∥∥∥
dP̃ (α)

dα
x

∥∥∥∥∥
∞

≤ C1 ‖x‖∞

Similarly, differentiating P̃ (α) twice w.r.t. α, we get
[
d2P̃ (α)

(dα)2

∣∣∣∣
α=0

]

(s,a)→(s′,a′)

=
d2πα(a

′|s′)
(dα)2

∣∣∣∣
α=0

P (s′|s, a).
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An identical argument leads to that, for arbitrary x,

max
‖u‖2=1

∥∥∥∥∥
d2P̃ (α)

(dα)2

∣∣∣∣
α=0

x

∥∥∥∥∥
∞

≤ C2 ‖x‖∞

Let Qα(s0, a0) be the corresponding Q-function for policy πα at state s0 and action a0. Observe

that Qα(s0, a0) can be written as:

Qα(s0, a0) = e⊤(s0,a0)(I− γP̃ (α))−1r = e⊤(s0,a0)M(α)r

where M(α) := (I− γP̃ (α))−1 and differentiating twice w.r.t α gives:

dQα(s0, a)

dα
= γe⊤(s0,a)M(α)

dP̃ (α)

dα
M(α)r,

d2Qα(s0, a0)

(dα)2
= 2γ2e⊤(s0,a0)M(α)

dP̃ (α)

dα
M(α)

dP̃ (α)

dα
M(α)r

+ γe⊤(s0,a0)M(α)
d2P̃ (α)

(dα)2
M(α)r.

By using power series expansion of matrix inverse, we can write M(α) as:

M(α) = (I− γP̃ (α))−1 =

∞∑

n=0

γnP̃ (α)n

which implies that M(α) ≥ 0 (componentwise) and M(α)1 = 1
1−γ

1, i.e. each row of M(α) is

positive and sums to 1/(1− γ). This implies:

max
‖u‖2=1

‖M(α)x‖∞ ≤
1

1− γ
‖x‖∞

This gives using expression for
d2Qα(s0,a0)

(dα)2
and

dQα(s0,a)
dα

,

max
‖u‖2=1

∣∣∣∣
d2Qα(s0, a0)

(dα)2

∣∣∣∣
α=0

∣∣∣∣ ≤ 2γ2

∥∥∥∥∥M(α)
dP̃ (α)

dα
M(α)

dP̃ (α)

dα
M(α)r

∥∥∥∥∥
∞

+ γ

∥∥∥∥∥M(α)
d2P̃ (α)

(dα)2
M(α)r

∥∥∥∥∥
∞

≤ 2γ2C2
1

(1− γ)3
+

γC2

(1− γ)2

max
‖u‖2=1

∣∣∣∣
dQα(s0, a)

dα

∣∣∣∣
α=0

∣∣∣∣ ≤
∥∥∥∥∥γM(α)

dP̃ (α)

dα
M(α)r

∥∥∥∥∥
∞

≤ γC1

(1− γ)2
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Consider the identity:

Ṽ (α) =
∑

a

πα(a|s0)Qα(s0, a),

By differentiating Ṽ (α) twice w.r.t α, we get

d2Ṽ (α)

(dα)2
=
∑

a

d2πα(a|s0)
(dα)2

Qα(s0, a) + 2
∑

a

dπα(a|s0)
dα

dQα(s0, a)

dα
+
∑

a

πα(a|s0)
d2Qα(s0, a)

(dα)2
.

Hence,

max
‖u‖2=1

∣∣∣∣∣
d2Ṽ (α)

(dα)2

∣∣∣∣∣ ≤
C2

1− γ
+

2γC2
1

(1− γ)2
+

2γ2C2
1

(1− γ)3
+

γC2

(1− γ)2

=
C2

(1− γ)2
+

2γC2
1

(1− γ)3
,

which completes the proof.

Using this lemma, we now establish smoothness for: the value functions under the direct policy

parameterization and the log barrier regularized objective 12 for the softmax parameterization.

Lemma D.3 (Smoothness for direct parameterization). For all starting states s0,

∥∥∥∇πV
π(s0)−∇πV

π′

(s0)
∥∥∥
2
≤ 2γ|A|

(1− γ)3
‖π − π′‖2

Proof: By differentiating πα w.r.t α gives

∑

a∈A

∣∣∣∣
dπα(a|s0)

dα

∣∣∣∣ ≤
∑

a∈A
|ua,s| ≤

√
|A|

and differentiating again w.r.t α gives

∑

a∈A

∣∣∣∣
d2πα(a|s0)

(dα)2

∣∣∣∣ = 0

Using this with Lemma D.2 with C1 =
√
|A| and C2 = 0, we get

max
‖u‖2=1

∣∣∣∣∣
d2Ṽ (α)

(dα)2

∣∣∣∣
α=0

∣∣∣∣∣ ≤
C2

(1− γ)2
+

2γC2
1

(1− γ)3
≤ 2γ|A|

(1− γ)3

which completes the proof.

We now present a smoothness result for the entropy regularized policy optimization problem

which we study for the softmax parameterization.
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Lemma D.4 (Smoothness for log barrier regularized softmax). For the softmax parameterization

and

Lλ(θ) = V πθ(µ) +
λ

|S| |A|
∑

s,a

log πθ(a|s) ,

we have that

‖∇θLλ(θ)−∇θLλ(θ
′)‖2 ≤ βλ ‖θ − θ′‖2

where

βλ =
8

(1− γ)3
+

2λ

|S|

Proof: Let us first bound the smoothness of V πθ(µ). Consider a unit vector u. Let θs ∈ R
|A|

denote the parameters associated with a given state s. We have:

∇θsπθ(a|s) = πθ(a|s)
(
ea − π(·|s)

)

and

∇2
θsπθ(a|s) = πθ(a|s)

(
eae

⊤
a − eaπ(·|s)⊤ − π(·|s)e⊤a + 2π(·|s)π(·|s)⊤ − diag(π(·|s))

)
,

where ea is a standard basis vector and π(·|s) is a vector of probabilities. We also have by differen-

tiating πα(a|s) once w.r.t α,

∑

a∈A

∣∣∣∣
dπα(a|s)

dα

∣∣∣∣
α=0

∣∣∣∣ ≤
∑

a∈A

∣∣∣∣u⊤∇θ+αuπα(a|s)
∣∣∣∣
α=0

∣∣∣∣

≤
∑

a∈A
πθ(a|s)

∣∣u⊤
s ea − u⊤

s π(·|s)
∣∣

≤ max
a∈A

( ∣∣u⊤
s ea
∣∣+
∣∣u⊤

s π(·|s)
∣∣
)
≤ 2

Similarly, differentiating once again w.r.t. α, we get

∑

a∈A

∣∣∣∣
d2πα(a|s)
(dα)2

∣∣∣∣
α=0

∣∣∣∣ ≤
∑

a∈A

∣∣∣∣u⊤∇2
θ+αuπα(a|s)

∣∣∣∣
α=0

u

∣∣∣∣

≤ max
a∈A

( ∣∣u⊤
s eae

⊤
a us

∣∣+
∣∣u⊤

s eaπ(·|s)⊤us

∣∣+
∣∣u⊤

s π(·|s)e⊤a us

∣∣

+ 2
∣∣u⊤

s π(·|s)π(·|s)⊤us

∣∣+
∣∣u⊤

s diag(π(·|s))us

∣∣
)

≤ 6
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Using this with Lemma D.2 for C1 = 2 and C2 = 6, we get

max
‖u‖2=1

∣∣∣∣∣
d2Ṽ (α)

(dα)2

∣∣∣∣
α=0

∣∣∣∣∣ ≤
C2

(1− γ)2
+

2γC2
1

(1− γ)3
≤ 6

(1− γ)2
+

8γ

(1− γ)3
≤ 8

(1− γ)3

or equivalently for all starting states s and hence for all starting state distributions µ,

‖∇θV
πθ(µ)−∇θV

πθ′ (µ)‖2 ≤ β ‖θ − θ′‖2 (53)

where β = 8
(1−γ)3

.

Now let us bound the smoothness of the regularizer λ
|S|R(θ), where

R(θ) :=
1

|A|
∑

s,a

log πθ(a|s)

We have
∂R(θ)

∂θs,a
=

1

|A| − πθ(a|s).

Equivalently,

∇θsR(θ) =
1

|A|1− πθ(·|s).

Hence,

∇2
θsR(θ) = −diag(πθ(·|s)) + πθ(·|s)πθ(·|s)⊤.

For any vector us,

∣∣u⊤
s ∇2

θsR(θ)us

∣∣ =
∣∣u⊤

s diag(πθ(·|s))us − (us · πθ(·|s))2
∣∣ ≤ 2‖us‖2∞.

Since∇θs∇θs′
R(θ) = 0 for s 6= s′,

∣∣u⊤∇2
θR(θ)u

∣∣ =
∣∣∣∣∣
∑

s

u⊤
s ∇2

θsR(θ)us

∣∣∣∣∣ ≤ 2
∑

s

‖us‖2∞ ≤ 2‖u‖22.

Thus R is 2-smooth and λ
|S|R is 2λ

|S|-smooth, which completes the proof.

E Standard Optimization Results

In this section, we present the standard optimization results from Ghadimi and Lan [2016], Beck

[2017] used in our proofs. We consider solving the following problem

min
x∈C
{f(x)} (54)

with C being a nonempty closed and convex set. We assume the following
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Assumption E.1. f : Rd → (−∞,∞) is proper and closed, dom(f) is convex and f is β smooth

over int(dom(f)).

Throughout the section, we will denote the optimal f value by f(x∗).

Definition E.1 (Gradient Mapping). We define the gradient mapping Gη(x) as

Gη(x) :=
1

η
(x− PC(x− η∇f(x))) (55)

where PC is the projection onto C.

Note that when C = R
d, the gradient mapping Gη(x) = ∇f(x).

Theorem E.1 (Theorem 10.15 Beck [2017]). Suppose that Assumption E.1 holds and let {xk}k≥0

be the sequence generated by the gradient descent algorithm for solving the problem (54) with the

stepsize η = 1/β. Then,

1. The sequence {F (xt)}t≥0 is non-increasing.

2. Gη(xt)→ 0 as t→∞

3. mint=0,1,...,T−1 ‖Gη(xt)‖ ≤
√

2βf(x0)−f(x∗)√
T

Theorem E.2 (Lemma 3 Ghadimi and Lan [2016]). Suppose that Assumption E.1 holds. Let x+ =
x− ηGη(x). Then,

∇f(x+) ∈ NC(x
+) + ǫ(ηβ + 1)B2,

where B2 is the unit ℓ2 ball, and NC is the normal cone of the set C.

We now consider the stochastic projected gradient descent algorithm where at each time step t,
we update xt by sampling a random vt such that

xt+1 = PC(xt − ηvt) , where E[vt|xt] = ∇f(xt) (56)

Theorem E.3 (Theorem 14.8 and Lemma 14.9 Shalev-Shwartz and Ben-David [2014]). Assume

C = {x : ‖x‖ ≤ B}, for some B > 0. Let f be a convex function and let x∗ ∈ argminx:‖x‖≤B f(w).
Assume also that for all t, ‖vt‖ ≤ ρ, and that stochastic projected gradient descent is run for N

iterations with η =
√

B2

ρ2N
. Then,

E

[
f

(
1

N

N∑

t=1

xt

)]
− f(x∗) ≤ Bρ√

N
(57)
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