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Abstract

We consider the problem of controlling an unknown linear dynamical system in the presence of
(nonstochastic) adversarial perturbations and adversarial convex loss functions. In contrast to classical
control, here it is impossible to precompute the optimal controller as it depends on the yet unknown
perturbations and costs. Instead, we measure regret against an optimal linear policy in hindsight, and
give the first efficient algorithm that guarantees a sublinear regret bound, scaling as O(T 2/3), in this
setting.

1 Introduction

Classical control theory assumes that nature evolves according to well-specified dynamics that is perturbed
by i.i.d. noise. While this approximation has proven very useful for controlling some real world systems, it
does not allow for construction of truly robust controllers. The focus of this paper is the construction of
truly robust controllers even when the underlying system is unknown and the perturbations are

adversarially chosen. For this purpose we describe the nonstochastic control problem and study efficient
algorithms to solve it for linear dynamical systems.

Specifically, we consider the case in which the underlying system is linear, but has potentially adversarial
perturbations (that can model deviations from linearity), i.e.

xt+1 = Axt +But + wt, (1)

where xt is the (observed) dynamical state, ut is a learner-chosen control and wt is an adversarial disturbance.
The goal of the controller is to minimize a sum of sequentially revealed adversarial cost functions ct(xt, ut)
over the state-control pairs that it visits.

The adversarial nature of wt prohibits an a priori computation of an optimal policy that is the hallmark
of classical optimal control. Instead, we consider algorithms for online control that iteratively produce a
control ut based on previous observations. The goal in this game-theoretic setting is to minimize policy
regret, or the regret compared to the best controller from a class Π, chosen with complete foreknowledge of
the system dynamics, the cost sequence, and all the disturbances:

Regret =
T
∑

t=1

ct(xt, ut)−min
π∈Π

T
∑

t=1

ct(x
π
t , u

π
t ).
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Notice that the cost of the benchmark is measured on the counterfactual state-action sequence (xπ
t , u

π
t )

that the benchmark policy in consideration visits, as opposed to the state-sequence visited by the the learner.
This implies instance-wise near-optimality for every perturbation sequence.

We give a formal definition of the nonstochastic control problem henceforth. Informally, nonstochastic
control for linear dynamical systems (LDS) can be stated as follows:

Nonstochastic Control for LDS: Without knowledge of the underlying system A,B, or the perturbations
wt, iteratively generate controls ut to minimize regret, over sequentially revealed adversarial convex costs
ct(xt, ut), against the class of all linear policies.

Our main result is an efficient algorithm for the nonstochastic control problem which attains the following
guarantee:

Theorem 1 (Informal Statement). For an unknown linear dynamical system where the perturbations wt (and
convex costs ct) are bounded and chosen by an adversary, there exists an efficient algorithm that generates
an adaptive sequence of controls {ut} for which

Regret = O(poly(natural-parameters)T 2/3).

1.1 Technical Outline

Our starting point is the recent work of [ABH+19], where the authors proposed a novel class of policies

choosing actions as a linear combination of past perturbations, ut =
∑k

i=1 Miwt−i. They demonstrate that
learning the coefficients Mi, via online convex optimization, allows their controller to compete with the
class of all linear state-feedback policies. This latter class is important, since it is known to be optimal for
the standard setting of normal i.i.d noise and quadratic loss functions, also known as the Linear Quadratic
Regulator (LQR), and associated robust control settings (see [BB08] for examples).

The caveat in [ABH+19] is that the system matrices (A,B) need to be known. In the case of a known
system, the disturbances can be simply computed via observations of the state, ie. wt = xt+1 − Axt −But.
However, if the system is unknown, it is not clear how to generalize their approach. Fundamentally, the
important component that is difficulty in identifying the system, or the matrices A,B, from the observations.
This is non-trivial since the noise is assumed to be adversarial, and was posed as a question in [Tu19].

In this paper we show how to overcome this difficulty and obtain sublinear regret for controlling an
unknown system in the presence of adversarial noise and adversarial loss functions. The regret notion we
adopt is policy regret against linear policies, exactly as in [ABH+19]. An important component that we
use is adversarial sys-id: an efficient method for uncovering the underlying system even in the presence of
adversarial perturbations. This method is not based on naive least squares method of regressing (xt, ut)
on xt+1. In particular, without independent, zero-mean wt’s, the latter approach can produce inconsistent
estimates of the system matrices.

1.2 Related Work

Robust Control: The classical control literature deals with adversarial perturbations in the dynamics in
a framework known as H∞ control, see e.g. [Ste94, ZDG+96]. In this setting, the controller solves for the
best linear controller assuming worst case noise to come, i.e.,

min
K1

max
w1

min
K2

...min
KT

max
wT

∑

t

ct(xt, ut).

This approach is overly pessimistic as it optimizes over the worst-case noise. In contrast, the metric in
nonstochastic control (NSC) is regret, which adapts to the per-instance perturbations.
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Learning to control stochastic LDS: There has been a resurgence of literature on control of linear
dynamical systems in the recent machine learning venues. The case of known systems was extensively studied
in the control literature, see the survey [Ste94]. Sample complexity and regret bounds for control (under
Gaussian noise) were obtained in [AYS11, DMM+18, AYLS19, MTR19, CKM19]. The works of [AYBK14],
[CHK+18] and [AHS19] allow for control in LDS with adversarial loss functions. Provable control in the
Gaussian noise setting via the policy gradient method was studied in [FGKM18]. These works operate in
the absence of perturbations or assume that the same are i.i.d., as opposed to our adversarial.

Control with adversarial perturbations: The most relevant reformulation of the control problem that
enables our result is the recent work of [ABH+19], who use online learning techniques and convex relaxation
to obtain provable bounds for controlling LDS with adversarial perturbations. However, the result and the
algorithm make extensive use of the availability of the system matrices. [Tu19] ask if the latter result can
be extended to unknown systems, a question that we answer in the affirmative.

System identification. For the stochastic setting, several works [FTM18, SMT+18, SR19] propose to
use the least-squares procedure for parameter identification. In the adversarial setting, least-squares can
lead to inconsistent estimates. For the partially observed stochastic setting, [OO19, SRD19, SMT+18] give
results guaranteeing parameter recovery using Gaussian inputs. Of these, the results in [SBR19] also apply
to the adversarial setting. We offer a simpler analysis for parameter identification, and develop rigorous
perturbation bounds for the control algorithm necessary to make guarantees on the quality of the control
solution. Other relevant work from the machine learning literature includes spectral filtering techniques for
learning and open-loop control of partially observable systems [HSZ17, AHL+18, HLS+18].

2 Problem Definition

2.1 Nontochastic Control: The General Case

Many dynamical systems admit the following dynamical description. These may be seen as discrete-time
analogues of controlled diffusion processes [Kry08].

xt+1 = f(xt, ut) + wt

Here f(x, u) is a transition function, and wt are perturbations or deviations from nominal dynamics. We
consider an online control problem during the course of which a controller must iteratively choose a control
input ut ∈ R

n, and suffers a loss ct(xt, ut), where xt ∈ R
m is the state of the system. The controller is

thereafter presented some output in the form of a resultant information set It. For example, the controller
may observe the state xt, and cost function ct, but the transition function f might be unknown. A policy
π = (π1, . . . πt : πt :: It → R

m) is a mapping from observed information to control. We denote a set of
policies by Π. We measure the performance of a control algorithm through the metric of policy regret: the
difference between the aggregate cost of the controller and that of the best policy in hindsight from a certain
class.

Definition 2 (Nonstochastic Control). A Nonstochastic Control problem instance is given by tuple (f :
R

m×R
n → R

m, {wt ∈ R
m}, {ct : Rm×R

n → R},Π), where for any sequence of controls u1, ..., uT , the states
are produced as xt+1 = f(xt, ut) + wt. The goal of the learner is to choose an adaptive sequence of controls
to minimize regret against the policy class Π, defined as:

Regret =

T
∑

t=1

ct(xt, ut)−min
π∈Π

T
∑

t=1

ct(x
π
t , u

π
t ),

where (xπ
t , u

π
t ) is the state-control pair visited by the benchmark policy π ∈ Π in consideration.

We specialize the above definition to linear dynamical systems below.
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2.2 Nonstochastic Control for Linear Dynamical Systems

We consider the setting of linear dynamical systems with time-invariant dynamics, i.e.

xt+1 = Axt +But + wt,

where xt ∈ R
m and ut ∈ R

n. The perturbation sequence wt may be adversarially chosen at the beginning of
the interaction, and is unknown to the learner. Likewise, the system is augmented with time-varying convex
cost functions ct(x, u). The total cost associated with a sequence of (random) controls, derived through an
algorithm A, is

J(A) =

T
∑

t=1

ct(xt, ut).

With some abuse of notation, we will denote by J(K) the cost associated with the execution of controls as
a linear controller K would suggest, ie. ut = −Kxt. The following conditions are assumed on the cost and
the perturbations 1.

Assumption 3. The perturbation sequence is bounded, ie. ‖wt‖ ≤ W , and chosen at the start of the
interaction, implying that this sequence wt does not depend on the choice of ut.

Assumption 4. As long as ‖xt‖, ‖ut‖ ≤ D, the convex costs admit ‖∇(x,u)ct(x, u)‖ ≤ GD.

The fundamental Linear Quadratic Regulator problem is a specialization of the above to the case when
the perturbations are i.i.d. Gaussian and the cost functions are positive quadratics, ie.

ct(x, u) = x⊤Qx+ u⊤Ru.

Objective We consider the setting where the learner has no knowledge of A,B and the perturbation
sequence wt. In this case, any inference of these quantities may only take place indirectly through the
observation of the state xt. Furthermore, the learner is made aware of the cost function ct only once the
choice of ut has been made.

Under such constraints, the objective of the algorithm is to choose an (adaptive) sequence of controls that
ensure that the cost suffered in this manner is comparable to that of the best choice of a linear controller with
complete knowledge of system dynamics A,B and the foreknowledge of the cost and perturbation sequences
{ct, wt}. Formally, we measure regret as

Regret = J(A)− min
K∈K

J(K).

K is the set of (κ, γ)-strongly stable linear controllers defined below. The notion of strong stability, introduced
in [CHK+18], offers a quantification of the classical notion of a stable controller in manner that permits a
discussion on non-asymptotic regret bounds.

Definition 5 (Strong Stability). A linear controller K is (κ, γ)-strongly stable for a linear dynamical sys-
tem specified via (A,B) if there exists a decomposition of A − BK = QLQ−1 with ‖L‖ ≤ 1 − γ, and
‖A‖, ‖B‖, ‖K‖, ‖Q‖, ‖Q−1‖ ≤ κ.

We also assume the learner has access to a fixed stabilizing controller K. When operating under unknown
transition matrices, the knowledge of a stabilizing controller permits the learner to prevent an inflation of
the size of the state beyond reasonable bounds.

Assumption 6. The learner knows a linear controller K that is (κ, γ)-strongly stable for the true, but
unknown, transition matrices (A,B) defining the dynamical system.

1Without loss of generality we shall assume that G,D,W, κ ≥ 1 holds, since these are upper bounds.
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The non-triviality of the regret guarantee rests on the benchmark set not being empty. As noted in
[CHK+18], a sufficient condition to ensure the existence of a strongly stable controller is the controllability
of the linear system (A,B). Informally, controllability for a linear system is characterized by the ability to
drive the system to any desired state through appropriate control inputs in the presence of deterministic
dynamics, ie. xt+1 = Axt +But.

Definition 7 (Strong Controllability). For a linear dynamical system (A,B), define, for k ≥ 1, a matrix
Ck ∈ R

n×km as
Ck = [B,AB,A2B . . . Ak−1B].

A linear dynamical system (A,B) is controllable with controllability index k if Ck has full row-rank. In
addition, such a system is also (k, κ)-strongly controllable if ‖(CkC

⊤
k )−1‖ ≤ κ.

As with stability, a quantitative analog of controllability first suggested in [CHK+18] is presented above.
It is useful to note that, as a consequence of the Cayley-Hamiltion theorem, for a controllable system the
controllability index is always at most the dimension of the state space. We adopt the assumption that the
system (A−BK, B) is (k, κ) strongly controllable.

Assumption 8. The linear dynamical system (A−BK, B) is (k, κ)-strongly controllable.

3 Preliminaries

This section sets up the concepts that aid the algorithmic description and the analysis.

3.1 Parameterization of the Controller

The total cost objective of a linear controller is non-convex in the canonical parameterization [FGKM18],
ie. J(K) is not convex in K. To remedy this, we use an alternative perturbation-based parameterization
for controller, recently proposed in [ABH+19], where the advised control is linear in the past perturbations
(as opposed to the state). This permits that the offline search for an optimal controller may be posed as a
convex program.

Definition 9. A perturbation-based policy M = (M [0], . . .M [H−1]) chooses control ut at state xt,

ut = −Kxt +
H
∑

i=1

M [i−1]wt−i.

3.2 State Evolution

Under the execution of a stationary policy M , the state may be expressed as a linear transformation Ψ
(defined below) of the perturbations, where the transformation Ψ’s is linear in the matrices M ’s.

xt+1 = (A−BK)H+1xt−H +

2H
∑

i=0

Ψi(M |A,B)wt−i

Definition 10. For a matrix pair (A,B), define the state-perturbation transfer matrix:

Ψi(M |A,B) = (A−BK)i1i≤H +

H
∑

j=0

(A−BK)jBM [i−j−1]1i−j∈[1,H].
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Definition 11. Define the surrogate state yt+1 and the surrogate action vt as stated below. The surrogate
cost ft as chosen to be the specialization of the t-th cost function with the surrogate state-action pair as the
argument.

yt+1(M |A,B, {w}) =
2H
∑

i=0

Ψi(M |A,B)wt−i

vt(M |A,B, {w}) = −Kyt(M |A,B, {w}) +
H
∑

i=1

M [i−1]wt−i

ft(M |A,B, {w}) = ct(yt(M |A,B, {w}), vt(M |A,B, {w}))

4 The Algorithm

Our approach follows the explore-then-commit paradigm, identifying the underlying the deterministic-
equivalent dynamics to within some accuracy using random inputs in the exploration phase. Such an
approximate recovery of parameters permits an approximate recovery of the perturbations, thus facilitating
the execution of the perturbation-based controller on the approximated perturbations.

Algorithm 1 Adversarial control via system identification.

Input: learning rate η, horizon H , number of iterations T , rounds of exploration T0.
Phase 1: System Identification.

Call Algorithm 2 with a budget of T0 rounds to obtain system estimates Â, B̂.
Phase 2: Robust Control.

Define the constraint set M as M = {M = (M [0], . . .M [H−1]) : ‖M [i−1]‖ ≤ κ4(1 − γ)i}.
Initialize ŵT0

= xT0+1 and ŵt = 0 for t < T0.
for t = T0 + 1, . . . , T do

Choose the action

ut = −Kxt +

H
∑

i=1

M
[i−1]
t ŵt−i.

Observe the new state xt, the cost function ct(x, u).
Record an estimate ŵt = xt+1 − Âxt − B̂ut.
Update Mt+1 = ΠM(Mt − η∇ft(Mt|Â, B̂, {ŵ})).

end for

Algorithm 2 System identification via random inputs.

Input: number of iterations T0.
for t = 0, . . . , T0 do

Execute the control ut = −Kxt + ηt with ηt ∼i.i.d. {±1}n.
Record the observed state xt.

end for

Declare Nj =
1

T0−k

∑T0−k−1
t=0 xt+j+1η

⊤
t , for all j ∈ [k].

Define C0 = (N0, . . .Nk−1), C1 = (N1, . . . Nk), and return Â, B̂ as

B̂ = N0, Â′ = C1C
⊤
0 (C0C

⊤
0 )−1, Â = Â′ + B̂K.
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Theorem 12. Under the assumptions 3, 4, 8, 6, when H = Θ(γ−1 log(κ2T )), η = Θ(GW
√
T )−1, T0 =

Θ(T 2/3 log δ−1), the regret incurred by Algorithm 1 for controlling an unknown linear dynamical system
admits the upper bound 2 stated below with probability at least 1− δ.

Regret = O(poly(κ, γ−1, k,m, n,G,W )T 2/3 log δ−1)

5 Regret Analysis

To present the proof concisely, we set up a few articles of use. For a generic algorithm A operating on a
generic linear dynamical system specified via a matrix pair (A,B) and perturbations {w}, let

1. J(A|A,B, {w}) be the cost of executing A, as incurred on the last T − T0 time steps,

2. xt(A|A,B, {w}) be the state achieved at time step t, and

3. ut(A|A,B, {w}) be the control executed at time step t.

We also note that following result from [ABH+19] that applies to the case when the matrices (A,B) that
govern the underlying dynamics are made known to the algorithm.

Theorem 13 (Known System; [ABH+19]). Let K be a (κ, γ)-strong stable controller for a system (A,B),
{wt} be a (possibly adaptive) perturbation sequence with ‖wt‖ ≤ W , and ct be costs satisfying Assumption 4.
Then there exists an algorithm A (Algorithm 1.2 with a learning rate of η = Θ(GW

√
T )−1 and H =

Θ(γ−1 log(κ2T ))), utilizing K, (A,B), that guarantees

J(A|A,B, {w})− min
K∈K

J(K|A,B, {w}) ≤ O(poly(m,n, κ, γ−1)GW 2
√
T log T ).

Proof. of Theorem 12. Define K = argminK∈KJ(K). Let J0 be the contribution to the regret associated
with the first T0 rounds of exploration. By Lemma 20, we have that J0 ≤ 16T0Gnκ8γ−2W 2.

Let A refer to the algorithm, from [ABH+19], executed in Phase 2. By Lemma 14,

Regret ≤ J0 +

T
∑

t=T0+1

ct(xt, ut)− J(K|A,B, {w}),

≤ J0 + (J(A|Â, B̂, {ŵ})− J(K|Â, B̂, {ŵ})) + (J(K|Â, B̂, {ŵ})− J(K|A,B,w)).

Let ‖A− Â‖, ‖B − B̂‖ ≤ εA,B and εA,B ≤ 10−3κ−10γ2 in the arguments below. The middle term above

can be upper bounded by the regret of algorithm A on the fictitious system (Â, B̂) and the perturbation
sequence {ŵ}. Before we can invoke Theorem 13, observe that

1. By Lemma 15, K is (2κ, 0.5γ)-strongly stable on (Â, B̂), as long as εA,B ≤ 0.25κ−3γ,

2. Lemma 18 ensures ‖ŵt‖ ≤ 2
√
nκ3γ−1W , as long as εA,B ≤ 10−3κ−10γ2.

With the above observations in place, Theorem 13 guarantees

J(A|Â, B̂, {ŵ})− J(K|Â, B̂, {ŵ}) ≤ poly(m,n, κ, γ−1)GW 2
√
T logT.

The last expression in the preceding line can be bound by Lemma 16, since Lemma 18 also bounds
‖wt − ŵt‖ ≤ 20

√
nκ11γ−3WεA,B whenever εA,B ≤ 10−3κ−10γ2 for t ≥ T0 + 1.

|J(K|Â, B̂, {ŵ})− J(K|A,B,w)| ≤ 32Gnκ11γ−3W 2 + 203TGnκ22γ−7W 2εA,B

Set εA,B = min(10−3κ−10γ2, T− 1

3 ) in Theorem 19 to conclude.

2If one desires the regret to scale as GW 2, as may be rightly demanded due to Assumption 4, it suffices to choose the

exploration scheme in Algorithm 2 as {±W}n, while introducing a multiplicative factor of W−2 in the computation Nj ’s. Such

modifications ensure a natural scaling for all terms involving costs.
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The regret minimizing algorithm, Phase 2 of Algorithm 1, chooses Mt so as to optimize for the cost of
the perturbation-based controller on a fictitious linear dynamical system (Â, B̂) subject to the perturbation
sequence {ŵ}. The following lemma shows that the definition of ŵt ensures that state-control sequence
visited by Algorithm 1 coincides with the sequence visited by the regret-minimizing algorithm on the fictitious
system.

Lemma 14 (Simulation Lemma). Let A be the algorithm, from [ABH+19], executed in Phase 2, and (xt, ut)
be the state-control iterates produced by Algorithm 1. Then for t ≥ T0 + 1,

xt = xt(A|Â, B̂, {ŵ}), ut = ut(A|Â, B̂, {ŵ}), and

T
∑

t=T0+1

ct(xt, ut) = J(A|Â, B̂, {ŵ}).

Proof. This proof follows by induction on xt = xt(A|Â, B̂, {ŵ}). Note that at the start of A, it is fed the
initial state xT0+1(A|Â, B̂, {ŵ}) = xT0+1 by the choice of ŵT0

. Say that for some t ≥ T0+1, it happens that
the inductive hypothesis is true. Consequently,

ut(A|Â, B̂, {ŵ}) = −Kxt(A|Â, B̂, {ŵ}) +
H
∑

i=1

M
[i−1]
t ŵt−i = −Kxt +

H
∑

i=1

M
[i−1]
t ŵt−i = ut.

xt+1(A|Â, B̂, {ŵ}) = Âxt(A|Â, B̂, {ŵ}) + B̂ut(A|Â, B̂, {ŵ}) + ŵt = Âxt + B̂ut + ŵt = xt+1

This, in turn, implies by choice of ŵt that the next states produced at the next time steps match.

The lemma stated below guarantees that the strong stability of K is approximately preserved under small
deviations of the system matrices.

Lemma 15 (Preservation of Stability). If K is (κ, γ)-strongly stable for a linear system (A,B), ie. A−BK =
QLQ−1, then K is (κ+ εA,B, γ − 2κ3εA,B)-strongly stable for (Â, B̂), ie.

Â− B̂K = QL̂Q−1, ‖Â‖, ‖B̂‖ ≤ κ+ εA,B, ‖L̂‖ ≤ 1− γ + 2κ3εA,B,

as long as ‖A − Â‖, ‖B − B̂‖ ≤ εA,B. Furthermore, in such case, the transforming matrices Q that certify

strong stability in both these cases coincide, and it holds ‖L̂− L‖ ≤ 2κ3εA,B.

Proof. Let A−BK = QLQ−1 with ‖Q‖, ‖Q−1‖, ‖K‖, ‖A‖, ‖B‖ ≤ κ, ‖L‖ ≤ 1− γ. Now

Â− B̂K = QLQ−1 + (Â−A)− (B̂ −B)K

= Q(L+Q−1((Â −A)− (B̂ −B)K)Q)Q−1

It suffices to note that ‖Q−1((Â −A)− (B̂ −B)K)Q‖ ≤ 2κ3εA,B.

The next lemma establishes that if the same linear state-feedback policy is executed on the actual and
the fictional linear dynamical system, the difference between the costs incurred in the two scenarios varies
proportionally with some measure of distance between the two systems.

Lemma 16 (Stability of Value Function). Let ‖A − Â‖, ‖B − B̂‖ ≤ εA,B ≤ 0.25κ−3γ, and K be any
(κ, γ)-strongly stable controller with respect to (A,B). Then, for any perturbation sequence that satisfies
‖wt − ŵt‖ ≤ εw ≤ W0 except possibly for the first step where ‖ŵ0‖ ≤ W0

3, it holds

|J(K|Â, B̂, {ŵ})− J(K|A,B,w)| ≤ 103TGκ8γ−3W0(εW +W0εA,B) + 32Gκ5γ−2W 2
0 .

3This handles the case for ŵT0
in Algorithm 1. Assume that W0 ≥ W .
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Proof. Under the action of a linear controller K, which is (κ, γ)-strongly stable for (A,B), it holds

xt+1(K|A,B, {w}) =
T
∑

t=0

(A−BK)iwt−i.

Consequently, ‖xt(K|A,B, {w})‖ ≤ κ2γ−1W , and, since K is (2κ, 2−1γ)-strongly stable for (Â, B̂) by
Lemma 15, ‖xt(K|Â, B̂, {ŵ})‖ ≤ 16κ2γ−1W0. It follows

|J(A|Â, B̂, {ŵ})− J(A|A,B,w)| ≤ 32Gκ3γ−1W0

T
∑

t=0

‖xt+1(K|A,B, {w})− xt+1(K|Â, B̂, {ŵ})‖

Finally, by using strong stability of the controller, we have

‖xt+1(K|A,B, {w})− xt+1(K|Â, B̂, {ŵ})‖ ≤
T
∑

t=0

∥

∥

∥
(A−BK)iwt−i − (Â− B̂K)iŵt−i

∥

∥

∥

≤
T
∑

t=0

(

∥

∥(A−BK)iwt−i − (A−BK)iŵt−i

∥

∥+
∥

∥

∥
(A−BK)iŵt−i − (Â− B̂K)iŵt−i

∥

∥

∥

)

≤κ2(1− γ)tW0 + κ2γ−1εw + 16W0κ
5γ−2εA,B

The last line follows from invocation of Lemma 17 on L,L′ matrices that certify the strongly stability of K
on (A,B) and (Â, B̂) respectively.

Lemma 17. For any matrix pair L,∆L, such that ‖L‖, ‖L+∆L‖ ≤ 1− γ, we have

∞
∑

t=0

‖(L+∆L)t − Lt‖ ≤ γ−2‖∆L‖

Proof. We make the inductive claim that ‖(L+∆L)t −Lt‖ ≤ t(1− γ)t−1‖∆L‖. The truth of this claim for
t = 0, 1 is easily verifiable. Assuming the inductive claim for some t, observe

‖(L+∆L)t+1 − Lt+1‖ ≤ ‖L((L+∆L)t − Lt)‖+ ‖∆L(L+∆L)t‖ ≤ (t+ 1)(1− γ)t‖∆L‖.

Finally, observe that
∑∞

t=0 t(1− γ)t−1 ≤ γ−2.

Lemma 18. During Algorithm 1.2, it holds, as long as εA,B ≤ 10−3κ−10γ2, for any t ≥ T0 + 1

‖xt‖ ≤ 4
√
nκ10γ−3W, ‖wt − ŵt‖ ≤ 20

√
nκ11γ−3WεA,B, and ‖ŵt−1‖ ≤ 2

√
nκ3γ−1W.

Proof. For a linear system evolving as as xt+1 = Axt +But +wt, if the control is chosen as ut = −Kxt + ũt,
the following is true, where A′ = A−BK.

xt+1 =

t
∑

i=0

(A′)t−i(wi +Bũi). (2)

In Phase 2, ũt is chosen as ũt =
∑H

i=1 M
[i−1]
t ŵt−i. We put forward the inductive hypothesis that for all

t ∈ [T0 + 1, t0], we have that ‖xt‖ ≤ X := 4
√
nκ10γ−3W , ‖ŵt − wt‖ ≤ Y := 20

√
nκ11γ−3WεA,B. If so,

‖ŵt‖ ≤ max(W + Y, ‖ŵT0
‖) = W + Y +

√
nκ3γ−1W for all t ≤ t0, by Lemma 20. The following display

completes the induction.

‖xt0+1‖ ≤ κ2γ−1(W + κ5γ−1(W + Y +
√
nκ3γ−1W )) ≤ X

‖ŵt0+1 − wt0+1‖ = ‖(A− Â)xt0+1 + (B − B̂)ut0+1‖
≤ εA,B(X + (κX + κ4γ−1(W + Y +

√
nκ3γ−1W ))) ≤ Y

The base case be verified via computation.
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6 System Identification via Random Inputs

This section details the guarantees afforded by the system identification procedure, which attempts to identify
the deterministic-equivalent dynamics (A,B) by first identifying matrices of the form (A′)iB, where A′ =
A−BK, and then recovering A by solving a linear system of equations.

Theorem 19 (System Recovery). Under assumptions 3, 8, 6, when Algorithm 2 is run for T0 steps, the
output pair (Â, B̂) satisfies, with probability 1− δ, that ‖Â−A‖F , ‖B̂ −B‖F ≤ εA,B, where

T0 = 103kmn2κ10γ−2W 2ε−2
A,B log(kmnδ−1).

Proof. Observe that A′ is a unique solution of the system of equations (in X) presented below.

ACk = [A′B, (A′)2B, . . . (A′)kB] = X [B,A′B, . . . (A′)k−1B] = XCk

Now, if, for all j, ‖Nj − (A′)jB‖ ≤ ε, it follows that ‖C0 − Ck‖F , ‖C1 − ACk‖F ≤ ε
√
k; in addition,

‖B̂ −B‖ ≤ ε. By Lemma 22 on rows, we have

‖Â′ −A′‖F ≤ 2ε
√
kmκ

σmin(Ck)− ε
√
k
.

So, setting ε =
εA,B

10
√
kmκ2

suffices. This may be accomplished by Lemma 21.

Lemma 20. When the control inputs are chosen as ut = −Kx+ ηt, where ηt ∼ {±1}n, it holds

‖xt‖ ≤
√
nκ3γ−1W, ‖ut‖ ≤ 2

√
nκ4γ−1W,

ct(xt, ut)− min
K∈K

ct(x
K , uK) ≤ 16Gnκ8γ−2W 2.

Proof. In conjuction with Equation 2, the strong stability of K suffices to establish this claim.

‖xt‖ ≤ (W + ‖B‖
√
n)‖Q‖‖Q−1‖

t−1
∑

i=0

‖Li‖ ≤ (W + κ
√
n)κ2

t−1
∑

i=0

(1− γ)i

In addition to sub-multiplicativity of the norm, we use that
∑t−1

i=0(1− γ)i ≤ γ−1.

6.1 Step 1: Moment Recovery

The following lemma promises an approximate recovery of (A′)iB’s through an appeal to arguments involving
measures of concentration.

Lemma 21. Algorithm 2 satisfies for all j ∈ [k], with probability 1− δ or more

‖Nj − (A′)jB‖ ≤ nκ3γ−1W

√

8 log(mnkδ−1)

T0 − k
.

Proof. Let Nj,t = xt+j+1η
⊤
t . With Equation 2, the fact that ηi is zero-mean with isotropic unit covariance,

and that it is chosen independently of {wj}, {ηj}j 6=i implies E[Nj ] = E[Nj,t] = (A′)jB.
Nj,t’s are bounded as ‖Nj,t‖ ≤ nκ3γ−1W . Involving the same instance of η in multiple terms, they

may not be independent across the second index t. To remedy this, define a sequence of centered random
variables Ñj,t = Nj,t − (A′)jB, and observe that they forms a martingale difference sequence with respect
to {ηt}, ie.

E[Ñj,t|η0, . . . ηt−1] = E[xt+j+1η
⊤
t |η0, . . . ηt−1]− (A′)jB = 0.

Together with a union bound on choice of j ∈ [k], the application of Matrix Azuma inequality on a standard
symmetric dilation of the sequence concludes the proof of the claim.
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6.2 Step 2: Recovery of System Matrices

The following is a standard result on the perturbation analysis for linear systems (See [Bha13], for example).
A proof is presented here for completeness.

Lemma 22. Let x∗ be the solution to the linear system Ax = b, and x̂ be the solution to (A+∆A)x = b+∆b,
then as long as ‖∆A‖ ≤ σmin(A), it is true that

‖x∗ − x̂‖ ≤ ‖∆b‖+ ‖∆A‖‖x∗‖
σmin(A) − ‖∆A‖

Proof. Observe the (in)equalities that imply the claim.

(A+∆A)(x̂ − x∗) = b+∆b−Ax∗ −∆Ax∗ = ∆b −∆Ax∗

‖(A+∆A)−1‖ ≤ 1

σmin(A)− ‖∆A‖

7 Conclusions

We define a generalization of the control setting to the nonstochastic regime in which the dynamics, in
addition to the perturbations, are adversarial and unknown to the learner. In this setting we give the first
efficient algorithm with sublinear regret, answering an open question posed in [Tu19].
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via reduction to expert prediction. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 3108–3117, 2019.
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