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Abstract

In modern supervised learning, there are a large number of tasks, but many of them are
associated with only a small amount of labelled data. These include data from medical image
processing and robotic interaction. Even though each individual task cannot be meaningfully
trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting
some similarities. We study a fundamental question of interest: When can abundant tasks with
small data compensate for lack of tasks with big data? We focus on a canonical scenario where
each task is drawn from a mixture of k linear regressions, and identify sufficient conditions for
such a graceful exchange to hold; The total number of examples necessary with only small data
tasks scales similarly as when big data tasks are available. To this end, we introduce a novel
spectral approach and show that we can efficiently utilize small data tasks with the help of
Ω̃(k3/2) medium data tasks each with Ω̃(k1/2) examples.
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1 Introduction

Recent advances in machine learning highlight successes on a small set of tasks where a large number
of labeled examples have been collected and exploited. These include image classification with 1.2
million labeled examples Deng et al. (2009) and French-English machine translation with 40 million
paired sentences Bojar et al. (2014). For common tasks, however, collecting clean labels is costly, as
they require human expertise (as in medical imaging) or physical interactions (as in robotics), for
example. Thus collected real-world datasets follow a long-tailed distribution, in which a dominant
set of tasks only have a small number of training examples Wang et al. (2017).

Inspired by human ingenuity in quickly solving novel problems by leveraging prior experience,
meta-learning approaches aim to jointly learn from past experience to quickly adapt to new tasks
with little available data Schmidhuber (1987); Thrun & Pratt (2012). This has had a significant
impact in few-shot supervised learning, where each task is associated with only a few training
examples. By leveraging structural similarities among those tasks, one can achieve accuracy far
greater than what can be achieved for each task in isolation Finn et al. (2017); Ravi & Larochelle
(2016); Koch et al. (2015); Oreshkin et al. (2018); Triantafillou et al. (2019); Rusu et al. (2018).
The success of such approaches hinges on the following fundamental question: When can we jointly
train small data tasks to achieve the accuracy of large data tasks?

We investigate this trade-off under a canonical scenario where the tasks are linear regressions in
d-dimensions and the regression parameters are drawn i.i.d. from a discrete set of a support size k.
Although widely studied, existing literature addresses the scenario where all tasks have the same
fixed number of examples. We defer formal comparisons to Section 6.

On one extreme, when large training data of sample size Ω(d) is available, each task can easily
be learned in isolation; here, Ω(k log k) such tasks are sufficient to learn all k regression parameters.
This is illustrated by a solid circle in Figure 1. On the other extreme, when each task has only one
example, existing approaches require exponentially many tasks (see Table 1). This is illustrated by
a solid square.

Several aspects of few-shot supervised learning makes training linear models challenging. The
number of training examples varies significantly across tasks, all of which are significantly smaller
than the dimension of the data d. The number of tasks are also limited, which restricts any
algorithm with exponential sample complexity. An example distribution of such heterogeneous tasks
is illustrated in Figure 1 with a bar graph in blue, where both the solid circle and square are far
outside of the regime covered by the typical distribution of tasks.

In this data scarce regime, we show that we can still efficiently achieve any desired accuracy in
estimating the meta-parameters defining the meta-learning problem. This is shown in the informal
version of our main result in Corollary 1.1. As long as we have enough number of light tasks each
with tL = Ω̃(1) examples, we can achieve any accuracy with the help of a small number of heavy
tasks each with tH = Ω̃(

√
k) examples. We only require the total number of examples that we

have jointly across all light tasks to be of order tLnL = Ω̃(dk2); the number of light tasks nL and
the number of examples per task tL trade off gracefully. This is illustrated by the green region in
Figure 1. Further, we only need a small number of heavy tasks with tHnH = Ω̃(k3/2), shown in
the yellow region. As long as the cumulative count of tasks in blue graph intersects with the light
(green) and heavy (yellow) regions, we can recover the meta-parameters accurately.

Corollary 1.1 (Special case of Theorem 1, informal). Given two batch of samples, the first batch
with

tL = Ω̃(1) , tLnL = Ω̃
(
dk2
)
,
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Figure 1: Realistic pool of meta-learning tasks do not include large data tasks (circle) or extremely
large number of small data tasks (square), where existing approaches achieve high accuracy. The
horizontal axis denotes the number of examples t per task, and the vertical axis denotes the number
of tasks in the pool that have at least t examples. The proposed approach succeeds whenever any
point in the light (green) region, and any point in the heavy (yellow) region are both covered by
the blue bar graph, as is in this example. The blue graph summarizes the pool of tasks in hand,
illustrating the cumulative count of tasks with more than t examples. We ignore constants and
poly log factors.

and the second batch with
tH = Ω̃

(√
k
)
, tHnH = Ω̃

(
k2
)
,

Algorithm 1 estimates the meta-parameters up to any desired accuracy of O (1) with a high probability,
under a certain assumptions on the meta-parameters.

We design a novel spectral approach inspired by Vempala & Wang (2004) that first learns a
subspace using the light tasks, and then clusters the heavy tasks in the projected space. To get the
desired tight bound on the sample complexity, we improve upon a perturbation bound from Li &
Liang (2018), and borrow techniques from recent advances in property testing in Kong et al. (2019).

2 Problem formulation and notations

There are two perspectives on approaching meta-learning: optimization based Li et al. (2017);
Bertinetto et al. (2019); Zhou et al. (2018); Zintgraf et al. (2019); Rajeswaran et al. (2019), and
probabilistic Grant et al. (2018); Finn et al. (2018); Kim et al. (2018); Harrison et al. (2018). Our
approach is motivated by the probabilistic view and we present a brief preliminary in Section 2.1.
In Section 2.2, we present a simple but canonical scenario where the tasks are linear regressions,
which is the focus of this paper.
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2.1 Review of probabilistic view on meta-learning

A standard meta-training for few-shot supervised learning assumes that we are given a collec-
tion of n meta-training tasks {Ti}ni=1 drawn from some distribution P (T ). Each task is asso-
ciated with a dataset of size ti, collectively denoted as a meta-training dataset Dmeta-train ={
{(xi,j , yi,j) ∈ Rd × R}j∈[ti]

}
i∈[n]

. Exploiting some structural similarities in P(T ), the goal is to

train a model for a new task T new, coming from P (T ), from a small amount of training dataset

D =
{

(xnew
j , ynew

j )
}
j∈[τ ]

.

Each task Ti is associated with a model parameter φi, where the meta-training data is indepen-
dently drawn from: (xi,j , yi,j) ∼ Pφi(y|x)P(x) for all j ∈ [ti]. The prior distribution of the tasks,
and hence the model parameters, is fully characterized by a meta-parameter θ such that φi ∼ Pθ(φ).

Following the definition from Grant et al. (2018), the meta-learning problem is defined as
estimating the most likely meta-parameter given meta-training data by solving

θ∗ ∈ arg max
θ

log P(θ | Dmeta-data) , (1)

which is a special case of empirical Bayes methods for learning the prior distribution from data
Carlin & Louis (2010). Once meta-learning is done, the model parameter of a newly arriving task
can be estimated by a Maximum a Posteriori (MAP) estimator:

φ̂ ∈ arg max
φ

log P(φ | D, θ∗) , (2)

or a Bayes optimal estimator:

φ̂ ∈ arg min
φ

Eφ′∼P(φ′ | D,θ∗)[ `(φ, φ
′) ] , (3)

for a choice of a loss function `. This estimated parameter is then used for predicting the label of a
new data point x in task T new as

ŷ ∈ arg max
y

P
φ̂
(y|x) . (4)

General notations. We define [n] := {1, . . . , n} ∀ n ∈ N; ‖x‖p :=
(∑

x∈x |x|
p)1/p as the standard

`p-norm; and Bp,k(µ, r) :=
{

x ∈ Rk | ‖x− µ‖p = r
}

. N (µ,Σ) denotes the multivariate normal

distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d, and 1 {E} denotes the indicator of an
event E.

2.2 Linear regression with a discrete prior

In general, the meta-learning problem of (1) is computationally intractable and no statistical
guarantees are known. To investigate the trade-offs involved, we assume a simple but canonical
scenario where the tasks are linear regressions:

xi,j ∼ Px , yi,j = β>i xi,j + εi,j , (5)

for the i-th task and j-th example. Each task is associated with a model parameter φi =(
βi ∈ Rd, σi ∈ R+

)
. The noise εi,j is i.i.d. as εi,j ∼ Pεi , and Pεi is a centered sub-Gaussian dis-

tribution with parameter σ2
i . Without loss of generality, we assume that Px is an isotropic (i.e.
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E
[
xi,jx

>
i,j

]
= Id) centered sub-Gaussian distribution. If Px is not isotropic, we assume there are

large number of xi,j ’s for whitening such that Px is sufficiently close to isotropic.
We do not make any assumption on the prior of φi’s other than that they come from a discrete dis-

tribution of a support size k. Concretely, the meta-parameter θ =
(
W ∈ Rd×k, s ∈ Rk+, p ∈ Rk+ ∩B1,k(0, 1)

)
defines a discrete prior (which is also known as mixture of linear experts Chaganty & Liang (2013))
on φi’s, where W = [w1, . . . ,wk] are the k candidate model parameters, and s = [s1, . . . , sk] are
the k candidate noise parameters. The i-th task is randomly chosen from one of the k components
from distribution p, denoted by zi ∼ multinomial(p). The training data is independently drawn
from (5) for each j ∈ [ti] with βi = wzi and σi = szi .

We want to characterize the sample complexity of this meta-learning. This depends on how
complex the ground truths prior θ is. This can be measured by the number of components k, the
separation between the parameters W, the minimum mixing probability pmin, and the minimum
positive eigen-value λmin of the matrix

∑k
j=1 pjwjw

>
j .

Notations. We define ρi :=
√
s2
zi + ‖wzi‖

2
2 as the sub-Gaussian norm of a label yi,j in the

i-th task, and ρ2 := maxi ρ
2
i . Without loss of generality, we assume ρ = 1, which can be always

achieved by scaling the meta-parameters appropriately. We also define pmin := minj∈[k] pj , and
∆ := mini,j∈[k],i 6=j ‖wi −wj‖2 and assume pmin,∆ > 0. ω ∈ R+ is such that two n× n matrices can
be multiplied in O (nω) time.

3 Algorithm

We propose a novel spectral approach (Algorithm 1) to solve the meta-learning linear regression,
consisting of three sub-algorithms: subspace estimation, clustering, and classification. These sub-
algorithms require different types of tasks, depending on how many labelled examples are available.

Clustering requires heay tasks, where each task is associated with many labelled examples,
but we need a smaller number of such tasks. On the other hand, for subspace estimation and
classification, light tasks are sufficient, where each task is associated with a few labelled examples.
However, we need a large number of such tasks. In this section, we present the intuition behind our
algorithm design, and the types of tasks required. Precisely analyzing these requirements is the
main contribution of this paper, to be presented in Section 4.

3.1 Intuitions behind the algorithm design

We give a sketch of the algorithm below. Each step of meta-learning is spelled out in full detail in
Section 5. This provides an estimated meta-parameter θ̂ =

(
Ŵ, ŝ, p̂

)
. When a new task arrives,

this can be readily applied to solve for prediction, as defined in Definition 4.5.
Subspace estimation. The subspace spanned by the regression vectors, span{w1, . . . ,wk},

can be easily estimated using data from the (possibly) light tasks with only ti ≥ 2. Using any two

independent examples from the same task (xi,1, yi,1), (xi,2, yi,2), it holds that E
[
yi,1yi,2xi,1x

>
i,2

]
=∑k

j=1 pjwjw
>
j . With a total of Ω(d log d) such examples, the matrix

∑k
j=1 pjwjw

>
j can be accurately

estimated under spectral norm, and so is the column space span{w1, . . . ,wk}. We call this step
subspace estimation.

Clustering. Given an accurate estimation of the subspace span{w1, . . . ,wk}, we can reduce
the problem from a d-dimensional to a k-dimensional regression problem by projecting x onto
the subspace of U. Tasks with ti = Ω(k) examples can be individually trained as the unknown
parameter is now in Rk. The fundamental question we address is: What can we do when ti = o(k)?
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Algorithm 1

Meta-learning

1. Subspace estimation. Compute subspace U which approximates span {w1, . . . ,wk}, with
singular value decomposition.

2. Clustering. Project the heavy tasks onto the subspace of U, perform distance-based k clustering,
and estimate w̃i for each cluster.

3. Classification. Perform likelihood-based classification of the light tasks using w̃i estimated
from the Clustering step, and compute the more refined estimates (ŵi, ŝi, p̂i) of (wi, si, pi) for
i ∈ [k].

Prediction

4. Prediction. Perform MAP or Bayes optimal prediction using the estimated meta-parameter as
a prior.

We propose clustering such light tasks based on their estimates of the regression vector βi’s, and
jointly solve a single regression problem for each cluster.

To this end, we borrow techniques from recent advances in property estimation for linear
regression. Recently, in the contextual bandit setting, Kong et al. (2019) proposed an estimator
for the correlation between the linear regressors between a pair of datasets. Concretely, given two
datasets {x1,j , y1,j}j∈[t] and {x2,j , y2,j}j∈[t] whose true (unknown) regression vectors are β1 and β2,

one can estimate ‖β1‖22, ‖β2‖22 and β>1 β2 accurately with t = O
(√
d
)
. We use this technique to

estimate ‖βi2 − βi2‖
2
2, whose value can be used to check if the two tasks are in the same clusters.

We cluster the tasks with ti = Ω
(√
k
)

into k disjoint clusters. We call this step clustering.
After clustering, resulting estimated w̃i’s have two sources of error: the error in the subspace

estimation, and the error in the parameter estimation for each cluster. If we cluster more heavy
tasks, we can reduce the second error but not the first. We could increase the samples used in
subspace estimation, but there is a more sample efficient way: classification.

Classification. We start the classification step, once each cluster has enough (i.e. Ω(k))
datapoints to obtain a rough estimation of their corresponding regression vector. In this regime, we
have O (1) error in the estimated w̃i’s. This is sufficient for us to add more datapoints to grow each
of the clusters. When enough data points are accumulated (i.e. Ω̃(d) for each cluster), then we can
achieve any desired accuracy with this larger set of accurately classified tasks. This separation of
the roles of the three sub-algorithms is critical in achieving the tightest sample complexity.

In contrast to the necessary condition of ti = Ω
(√
k
)

for the clustering step, we show that one
can accurately determine which cluster a new task belongs to with only ti = Ω(log k) examples once

we have a rough initial estimation W̃ of the parameter W. We grow the clusters by adding tasks
with a logarithmic number of examples until we have enough data points per cluster to achieve the
desired accuracy. We call this step classification. This concludes our algorithm for the parameter
estimation (i.e. meta-learning) phase.
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4 Main results

Suppose we have nH heavy tasks each with at least tH training examples, and nL light tasks
each with at least tL training examples. If heavy tasks are data rich (tH � d), we can learn W
straightforwardly from a relatively small number, i.e. nH = Ω(k log k). If the light tasks are data
rich (tL � k), they can be straightforwardly clustered on the projected k-dimensional subspace. We
therefore focus on the following challenging regime of data scarcity.

Assumption 1. The heavy dataset DH consists of nH heavy tasks, each with at least tH samples.
The first light dataset DL1 consists of nL1 light tasks, each with at least tL1 samples. The second
light dataset DL2 consists of nL2 tasks, each with at least tL2 samples. We assume tL1, tL2 < k, and
tH < d.

To give more fine grained analyses on the sufficient conditions, we assume two types of light tasks
are available with potentially differing sizes (Remark 4.3). In meta-learning step in Algorithm 1,
subspace estimation uses DL1, clustering uses DH , and classification uses DL2. We provide proofs of
the main results in Appendices A, B, and C.

4.1 Meta-learning

We characterize a sufficient condition to achieve a target accuracy ε in estimating the meta-parameters
θ = (W, s,p).

Theorem 1 (Meta-learning). For any failure probability δ ∈ (0, 1), and accuracy ε ∈ (0, 1), given
three batches of samples under Assumption 1, meta-learning step of Algorithm 1 estimates the
meta-parameters with accuracy

‖ŵi −wi‖2 ≤ εsi ,∣∣ŝ2
i − s2

i

∣∣ ≤ ε√
d
s2
i , and

|p̂i − pi| ≤ ε

√
tL2

d
pi ,

with probability at least 1− δ, if the following holds. The numbers of tasks satisfy

nL1 = Ω

d log3
(

d
pmin∆δ

)
tL1

·min
{

∆−6p−2
min,∆

−2λ−2
min

} ,

nH = Ω

(
log(k/δ)

tH pmin∆2

(
k + ∆−2

))
,

nL2 = Ω

(
d log2(k/δ)

tL2pminε2

)
,

and the numbers of samples per task satisfy tL1 ≥ 2, tL2 = Ω
(
log (kd/(pminδε)) /∆

4
)
, and

tH = Ω
(

∆−2
√
k log (k/(pmin∆δ))

)
, where λmin is the smallest non-zero eigen value of M :=∑k

j=1 pjwjw
>
j ∈ Rd×d.

In the following remarks, we explain each of the conditions.
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Remark 4.1 (Dependency in DL1). The total number of samples used in subspace estimation is
nL1tL1. The sufficient condition scales linearly in d which matches the information theoretically
necessary condition up to logarithmic factors. If the matrix M is well conditioned, for example when
wi’s are all orthogonal to each other, subspace estimation is easy, and nL1tL1 scales as ∆−2λ−2

min.
Otherwise, the problem gets harder, and we need ∆−6p−2

min samples. Note that in this regime, tensor
decomposition approaches often fails to provide any meaningful guarantee (see Table 1). In proving
this result, we improve upon a matrix perturbation bound in Li & Liang (2018) to shave off a k6

factor on nL1 (see Lemma A.11).

Remark 4.2 (Dependency in DH). The clustering step requires tH = Ω̃(
√
k), which is necessary

for distance-based clustering approaches such as single-linkage clustering. From Kong & Valiant
(2018); Kong et al. (2019) we know that it is necessary (and sufficient) to have t = Θ(

√
k), even for

a simpler testing problem between β1 = β2 or ‖β1 − β2‖22 � 0, from two labelled datasets with two
linear models β1 and β2.

Our clustering step is inspired by Vempala & Wang (2004) on clustering under Gaussian mixture
models, where the algorithm succeeds if tH = Ω̃(∆−2

√
k). Although a straightforward adaptation

fails, we match the sufficient condition.
We only require the number of heavy samples nHtH to be Ω̃ (k/pmin) up to logarithmic factors,

which is information theoretically necessary.

Remark 4.3 (Gain of using two types of light tasks). To get the tightest guarantee, it is necessary
to use a different set of light tasks to perform the final estimation step. First notice that the first
light dataset DL1 does not cover the second light dataset since we need tL2 ≥ Ω(log(kd)) which does
not need to hold for the first dataset DL1. On the other hand, the second light dataset does not cover
the first light dataset in the setting where ∆ or pmin is very small.

Remark 4.4 (Dependency in DL2). Classification and prediction use the same routine to classify
the given task. Hence, the log k requirement in tL2 is tight, as it matches our lower bound in
Proposition 4.6. The extra terms in the log factor come from the union bound over all nL2 tasks to
make sure all the tasks are correctly classified. It is possible to replace it by log(1/ε) by showing that
ε fraction of incorrectly classified tasks does not change the estimation by more than ε. We only
require nL2tL2 = Ω(d/pmin) up to logarithmic factors, which is information theoretically necessary.

4.2 Prediction

Given an estimated meta-parameter θ̂ = (Ŵ, ŝ, p̂), and a new dataset D = {(xnew
j , ynew

j )}j∈[τ ], we
make predictions on the new task with unknown parameters using two estimators: MAP estimator
and Bayes optimal estimator.

Definition 4.5. Define the maximum a posterior (MAP) estimator as

β̂MAP(D) := ŵî , where î := arg max
i∈[k]

log L̂i , and

L̂i := exp

(
−

τ∑
j=1

(ynew
j −ŵ>i xnew

j )
2

2ŝ2i
− τ log ŝi + log p̂i

)
.

Define the posterior mean estimator as

β̂Bayes(D) :=

∑k
i=1 L̂iŵi∑k
i=1 L̂i

.
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If the true prior, {(wi, si, pi)}i∈[k], is known. The posterior mean estimator achieves the smallest

expected squared `2 error, ED,βnew

[∥∥∥β̂(D)− βnew
∥∥∥2

2

]
. Hence, we refer to it as Bayes optimal

estimator. The MAP estimator maximizes the probability of exact recovery.

Theorem 2 (Prediction). Under the hypotheses of Theorem 1 with ε ≤ min
{

∆/10,∆2
√
d/50

}
, the

expected prediction errors of both the MAP and Bayes optimal estimators β̂(D) are bound as

E
[(

x>β̂(D)− y
)2
]
≤ δ +

(
1 + ε2

) k∑
i=1

pis
2
i , (6)

if τ ≥ Θ
(
log(k/δ)/∆4

)
, where the true meta-parameter is θ = {(wi, si, pi)}ki=1, the expectation is

over the new task with model parameter φnew = (βnew, σnew) ∼ Pθ, training dataset D ∼ Pφnew , and
test data (x, y) ∼ Pφnew .

Note that the
∑k

i=1 pis
2
i term in (6) is due to the noise in y, and can not be avoided by any

estimator. With an accurate meta-learning, we can achieve a prediction error arbitrarily close to this
statistical limit, with τ = O (log k). Although both predictors achieve the same guarantee, Bayes
optimal estimator achieves smaller training and test errors in Figure 2, especially in challenging
regimes with small data.

(a) Training error (b) Prediction error

Figure 2: Bayes optimal estimator achieves smaller errors for an example. Here, k = 32, d = 256,
W>W = Ik, s = 1k, p = 1k/k, and Px and Pε are standard Gaussian distributions. The parameters
were learnt using the Meta-learning part of Algorithm 1 as a continuation of simulations discussed
in Appendix E, where we provide extensive experiments confirming our analyses.

We show that τ = Ω(log k) training samples are necessary (even if the ground truths meta-
parameter θ is known) to achieve error approaching this statistical limit. Let Θk,∆,σ denote the set
of all meta-parameters with k components, satisfying ‖wi −wj‖2 ≥ ∆ for i 6= j ∈ [k] and si ≤ σ
for all i ∈ [k]. The following minimax lower bound shows that there exists a threshold scaling as
O (log k) below which no algorithm can achieve the fundamental limit of σ2, which is

∑k
i=1 pis

2
i in

this minimax setting.
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Remark 4.6 (Lower bound for prediction). For any σ,∆ > 0, if τ =
(
(1 + ∆2)/σ2

)−1
log(k − 1),

then

inf
ŷ

sup
θ∈Θk,∆,σ

E
[
(ŷ(D, θ)− y)2

]
= σ2 + Ω

(
∆2
)
, (7)

where the minimization is over all measurable functions of the meta-parameter θ and the training
data D of size τ .

5 Details of the algorithm and the analyses

We explain and analyze each step in Algorithm 1. These analyses imply our main result in
meta-learning, which is explicitly written in Appendix A.

5.1 Subspace estimation

In the following, we use k SVD(·, k) routine that outputs the top k-singular vectors. As E[M̂] =
M :=

∑k
j=1 pjwjw

>
j , this outputs an estimate of the subspace spanned by the true parameters. We

show that as long as tL1 ≥ 2, the accuracy only depends on the total number of examples, and it is
sufficient to have nL1tL1 = Ω̃(d).

Algorithm 2 Subspace estimation

Input: data DL1 = {(xi,j , yi,j)}i∈[nL1],j∈[tL1], k ∈ N
compute for all i ∈ [nL1]

β̂
(1)
i ←

2
tL1

tL1/2∑
j=1

yi,jxi,j , β̂
(2)
i ←

2
tL1

tL1∑
j=tL1/2+1

yi,jxi,j

M̂← (2nL1)−1∑nL1
i=1

(
β̂

(1)
i β̂

(2)>
i + β̂

(2)
i β̂

(1)>
i

)
U← k SVD

(
M̂, k

)
output U

The dependency on the accuracy ε changes based on the ground truths meta-parameters. In an
ideal case when W is an orthonormal matrix (with condition number one), the sample complexity
is Õ

(
d/(p2

minε
2)
)
. For the worst case W, it is Õ

(
d/
(
p2

minε
6
))

.

Lemma 5.1 (Learning the subspace). Suppose Assumption 1 holds, and let U ∈ Rd×k be the matrix

with top k eigen vectors of matrix M̂ ∈ Rd×d. For any failure probability δ ∈ (0, 1) and accuracy
ε ∈ (0, 1), if the sample size is large enough such that

nL1 = Ω
(
dt−1
L1 ·min

{
ε−6p−2

min, ε
−2λ−2

min

}
· log3(nd/δ)

)
,

and 2 ≤ tL1 < d, we have ∥∥∥(UU> − I)wi

∥∥∥
2
≤ ε , (8)

for all i ∈ [k] with probability at least 1 − δ, where λmin is the smallest non-zero eigen value of
M :=

∑k
j=1 pjwjw

>
j .

Time complexity: O
((
nω−1
L1 + nL1tL1

)
d
)

for computing M̂, and O
(
kd2
)

for k SVD Allen-Zhu
& Li (2016).
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5.2 Clustering

Once we have the subspace, we can efficiently cluster any task associated with tH = Ω̃(
√
k) samples.

In the following, the matrix H ∈ RnH×nH estimates the distance between the parameters in the
projected k-dimensional space. If there is no error in U, then E[Hi,j ] ≥ Ω

(
∆2
)

if i and j are from
different components, and zero otherwise. Any clustering algorithm can be applied treating H as a
distance matrix.

Algorithm 3 Clustering and estimation

Input: data DH = {(xi,j , yi,j)}i∈[nH ],j∈[tH ], 2L ≤ tH , k ∈ N, L ∈ N, U ∈ Rd×k

compute for all ` ∈ [L] and i ∈ [nH ]

β
(`)
i ← (2L/tH)

∑`·(tH/2L)
j=(`−1)·(tH/2L)+1 yi,jxi,j

β
(`+L)
i ← (2L/tH)

∑2`·(tH/2L)
j=`·(tH/2L)+1 yi,jxi,j

compute for all ` ∈ [L] and (i, j) ∈ [nH ]× [nH ]

H
(`)
i,j ←

(
β̂

(`)
i − β̂

(`)
j

)>
UU>

(
β̂

(`+L)
i − β̂(`+L)

j

)
compute for all (i, j) ∈ [nH ]× [nH ]

Hi,j ← median
(
{H(`)

i,j }`∈[L]

)
Cluster DH using H and return its partition {C`}`∈[k]

compute for all ` ∈ [L]
w̃` ← (tH |C`|)−1∑

i∈C`,j∈[tH ] yi,jUU>xi,j

r̃2
` ← (tH |C`|)−1∑

i∈C`,j∈[tH ]

(
yi,j − x>i,jw̃`

)2

p̃` ← |C`| /nH
output

{
C`, w̃`, r̃

2
` , p̃`

}k
`=1

This is inspired by Vempala & Wang (2004), where clustering mixture of Gaussians is studied.
One might wonder if it is possible to apply their clustering approach to β̂i’s directly. This approach
fails as it crucially relies on the fact that ‖x− µ‖2 =

√
k±Õ(1) with high probability for x ∼ N (0, Ik).

Under our linear regression setting, ‖yx− β‖2 does not concentrate. We instead propose median of

estimates, to get the desired tH = Ω̃(
√
k) sufficient condition.

Lemma 5.2 (Clustering and initial parameter estimation). Under Assumption 1, and given an
orthonormal matrix U ∈ Rd×k satisfying (8) with any ε ∈ (0,∆/4), Algorithm 3 correctly clusters all
tasks with tH = Ω(∆−2

√
k log(n/δ)) with probability at least 1− δ, ∀ δ ∈ (0, 1). Further, if

nH = Ω

(
k log(k/δ)

tH ε̃2 pmin

)
, (9)

for any ε̃ > 0, with probability at least 1− δ,∥∥∥U>(w̃i −wi)
∥∥∥2

2
≤ ε̃ (10a)∣∣r̃2

i − r2
i

∣∣ ≤ ε̃√
k
r2
i , (10b)

where r2
i := (s2

i + ‖w̃i −wi‖22) for all i ∈ [k].

Time complexity: It takes O (nHdtH + nHdk) time to compute {U>β̂(l)
i }i∈[nH ],l∈[L]. Then by

using matrix multiplication, it takes O
(
n2
Hk

ω−2
)

time to compute the matrix H, and the single
linkage clustering algorithm takes O

(
n2
H

)
time Sibson (1973).
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5.3 Classification

Once we have {w̃`}k`=1 from the clustering step, we can efficiently classify any task with tL2 = Ω̃(log k)
samples, and an extra log nL2 samples are necessary to apply the union bound. This allows us to
use the light samples, in order to refine the clusters estimated with heavy samples. This separation
allows us to achieve the desired sample complexity on light tasks (tL2 = Ω(∆−4 log d), nL2tL2pmin =
Ω̃(ε−2d)), and heavy tasks (tH = Ω̃(∆−2

√
k), nHtHpmin = Ω̃(∆−2k)).

In the following, we use Least Squares(·) routine that outputs the least-squares estimate of all
the examples in each cluster. Once each cluster has O (d) samples, we can accurately estimate the
meta-parameters.

Algorithm 4 Classification and estimation

Input: data DL2 = {(xi,j , yi,j)}i∈[nL2],j∈[tL2],
{
C`, w̃`, r̃

2
`

}
`∈[k]

compute for all i ∈ [nL2]

hi ← arg min
`∈[k]

1

2r̃2
`

∑
j∈[tL2]

(
yi,j − x>i,jw̃`

)2
+ tL2 log r̃`

Chi ← Chi ∪ {(xi,j , yi,j)}
tL2
j=1

compute for all ` ∈ [k],
ŵ` ← Least Squares(C`)
ŝ2
` ← (tL2 |C`| − d)−1∑

i∈C`,j∈[tL2]

(
yi,j − x>i,jŵ`

)2

p̂` ← |C`| /nL2

output
{
C`, ŵ`, ŝ

2
` , p̂`

}k
`=1

Lemma 5.3 (Refined parameter estimation via classification). Under Assumption 1 and given
estimated parameters w̃i, r̃i satisfying ‖w̃i −wi‖2 ≤ ∆/10,

(
1−∆2/50

)
r̃2
i ≤ s2

i + ‖w̃i −wi‖22 ≤(
1 + ∆2/50

)
r̃2
i for all i ∈ [k] and nL2 task with tL2 = Ω

(
log(knL2/δ)/∆

4
)

examples per task, with
probability 1− δ, Algorithm 4 correctly classifies all the nL2 tasks. Further, for any 0 < ε ≤ 1 if

nL2 = Ω

(
d log2(k/δ)

tL2pminε2

)
, (11)

the following holds for all i ∈ [k],

‖ŵi −wi‖2 ≤ εsi , (12a)∣∣ŝ2
i − s2

i

∣∣ ≤ ε√
d
s2
i , and (12b)

|p̂i − pi| ≤ ε
√
tL2/d pi. (12c)

Time complexity: Computing {hi}i∈[nL2] takes O (nL2tL2dk) time, and least square estimation
takes O

(
nL2tL2d

ω−1
)

time.

6 Related Work

Meta-learning linear models have been studied in two contexts: mixed linear regression and multi-task
learning.
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Table 1: Sample complexity for previous work in MLR to achieve small constant error on parameters
recovery of the mixed linear regression problem. We ignore the constants and poly log factors. Let
n, d, and k denote the number of samples, the dimension of the data points, and the number of
clusters, respectively. Yi et al. (2016) and Chaganty & Liang (2013) requires σk, the k-th singular
value of some moment matrix. Sedghi et al. (2016) requires smin, the k-th singular value of the
matrix of the regression vectors. Note that 1/smin and 1/σk can be infinite even when ∆ > 0. Zhong
et al. (2016) algorithm requires ∆max/∆min = O (1) and some spectral properties.

References Noise # Samples n

Chaganty & Liang (2013) Yes d6 · poly(k, 1/σk)
Yi et al. (2016) No d · poly(k, 1/∆, 1/σk)
Zhong et al. (2016) No d · exp(k log(k log d))
Sedghi et al. (2016) Yes d3 · poly(k, 1/smin)
Li & Liang (2018) No d · poly(k/∆) + exp(k2 log(k/∆))

Chen et al. (2020) No d · exp(
√
k) poly(1/∆)

Mixed Linear Regression (MLR). When each task has only one sample, (i.e. ti = 1), the
problem has been widely studied. Prior work in MLR are summarized in Table 1. We emphasize that
the sample and time complexity of all the previous work either has a super polynomial dependency
on k (specifically at least exp(

√
k)) as in Zhong et al. (2016); Li & Liang (2018); Chen et al. (2020)),

or depends on the inverse of the k-th singular value of some moment matrix as in Chaganty &
Liang (2013); Yi et al. (2016); Sedghi et al. (2016), which can be infinite. Chen et al. (2020) cannot
achieve vanishing error when there is noise.

Multi-task learning. Baxter (2000); Ando & Zhang (2005); Rish et al. (2008); Orlitsky (2005)
address a similar problem of finding an unknown k-dimensional subspace, where all tasks can be
accurately solved. The main difference is that all tasks have the same number of examples, and the
performance is evaluated on the observed tasks used in training. Typical approaches use trace-norm

to encourage low-rank solutions of the matrix
[
β̂i, . . . , β̂n

]
∈ Rd×n. This is posed as a convex

program Argyriou et al. (2008); Harchaoui et al. (2012); Amit et al. (2007); Pontil & Maurer (2013).
Closer to our work is the streaming setting where n tasks are arriving in an online fashion and one

can choose how many examples to collect for each. Balcan et al. (2015) provides an online algorithm
using a memory of size only O (kn+ kd), but requires some tasks to have ti = Ω

(
dk/ε2

)
examples.

In comparison, we only need tH = Ω̃(
√
k) but use O

(
d2 + kn

)
memory. Bullins et al. (2019) also

use only small memory, but requires Ω̃
(
d2
)

total samples to perform the subspace estimation under
the setting studied in this paper.
Empirical Bayes/Population of parameters. A simple canonical setting of probabilistic meta-
learning is when Pφi is a univariate distribution (e.g. Gaussian, Bernoulli) and φi is the parameter
of the distribution (e.g. Gaussian mean, success probability). Several related questions have been
studied. In some cases, one might be interested in just learning the prior distribution Pθ(φ) or the
set of φi’s. For example, if we assume each student’s score of one particular exam xi is a binomial
random variable with mean φi (true score), given the scores of the students in a class, an ETS
statistician Lord (1969) might want to learn the distribution of their true score φi’s. Surprisingly,
the minimax rate on estimating the prior distribution Pθ(φ) was not known until very recently Tian
et al. (2017); Vinayak et al. (2019) even in the most basic setting where Pφi(x) is Binomial.

In some cases, similar to the goal of meta-learning, one might want to accurately estimate the
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parameter of the new task φnew given the new data xnew, perhaps by leveraging an estimation of
the prior Pθ(φ). This has been studied for decades under the empirical bayes framework in statistics
(see, e.g. the book by Efron Efron (2012) for an introduction of the field).

7 Discussion

We investigate how we can meta-learn when we have multiple tasks but each with a small number
of labelled examples. This is also known as a few-shot supervised learning setting. When each task
is a linear regression, we propose a novel spectral approach and show that we can leverage past
experience on small data tasks to accurately learn the meta-parameters and predict new tasks.

When each task is a logistic regression coming from a mixture model, then our algorithm can be
applied seamlessly. However, the notion of separation ∆ = mini 6=j ‖wi −wj‖2 does not capture the
dependence on the statistical complexity. Identifying the appropriate notion of complexity on the
groundtruths meta-parameters is an interesting research question.

The subspace estimation algorithm requires a total number of Ω̃(dk2) examples. It is worth
understanding whether this is also necessary.

Handling the setting where Px has different covariances in different tasks is a challenging problem.
There does not seem to exist an unbiased estimator for W. Nevertheless, Li & Liang (2018) study
the t = 1 case in this setting and come up with an exponential time algorithm. Studying this general
setting and coming up with a polynomial time algorithm for meta-learning in a data constrained
setting is an interesting direction.

Our clustering algorithm requires the existence of medium data tasks with tH = Ω(
√
k) examples

per task. It is worth investigating whether there exists a polynomial time and sample complexity
algorithms that learns with tH = o(

√
k). We conjecture that with the techniques developed in the

robust clustering literature Diakonikolas et al. (2018); Hopkins & Li (2018); Kothari et al. (2018), it
is possible to learn with tH = o(

√
k) in the expense of larger nH , and higher computation complexity.

For a lower bound perspective, it is worth understanding the information theoretic trade-off between
tH and nH when tH = o(

√
k).
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Appendix

We provide proofs of main results and technical lemmas.

A Proof of Theorem 1

Proof of Theorem 1. First we invoke Lemma 5.1 with ε = ∆/(10ρ) which outputs an orthonormal
matrix U such that ∥∥∥(UU> − I

)
wi

∥∥∥
2
≤ ∆/20 (13)

with probability 1− δ. This step requires a dataset with

nL1 = Ω

(
d

tL1
·min

{
∆−6p−2

min,∆
−2λ−2

min

}
· log3

(
d

pmin∆δ

))
i.i.d. tasks each with tL1 number of examples.

Second we invoke Lemma 5.2 with the matrix U estimated in Lemma 5.1 and ε̃ = min
{

∆
20 ,

∆2
√
k

100

}
which outputs parameters satisfying∥∥∥U>(w̃i −wi)

∥∥∥
2
≤ ∆/20∣∣r̃2

i − r2
i

∣∣ ≤ ∆2

100
r2
i .

This step requires a dataset with

nH = Ω

(
log(k/δ)

tH pmin∆2

(
k + ∆−2

))
i.i.d. tasks each with tH = Ω

(
∆−2
√
k log

(
k

pmin∆δ

))
number of examples.

Finally we invoke Lemma 5.3. Notice that in the last step we have estimated each wi with error
‖w̃i −wi‖2 ≤

∥∥UU>w̃i −UU>wi

∥∥
2

+
∥∥UU>wi −wi

∥∥
2
≤ ∆/10. Hence the input for Lemma 5.3

satisfies ‖w̃i −wi‖2 ≤ ∆/10. It is not hard to verify that(
1 +

∆2

50ρ2

)
r̃2
i ≥

(
s2
i + ‖w̃i −wi‖22

)
≥
(

1− ∆2

50ρ2

)
r̃2
i

Hence, given

nL2 = Ω

(
d log2(k/δ)

tL2pminε2

)
i.i.d. tasks each with tL2 = Ω

(
log
(

kd
pminδε

)
/∆4

)
examples. We have parameter estimation with

accuracy

‖ŵi −wi‖2 ≤ εsi ,∣∣ŝ2
i − s2

i

∣∣ ≤ ε√
d
s2
i , and

|p̂i − pi| ≤ ε
√
tL2/dpmin.

This concludes the proof.
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A.1 Proof of Lemma 5.1

Proposition A.1 (Several facts for sub-Gaussian random variables). Under our data generation
model, let c1 > 1 denote a sufficiently large constant, let δ ∈ (0, 1) denote the failure probability. We
have, with probability 1− δ, for all i ∈ [n], j ∈ [t],∥∥∥∥∥∥1

t

t∑
j=1

yi,jxi,j − βi

∥∥∥∥∥∥
2

≤ c1 ·
√
d · ρ · log(nd/δ) · t−1/2.

Remark A.2. The above about is not tight, and can be optimized to log(·)/t+ log1/2(·)/t1/2. Since
we don’t care about log factors, we only write log(·)/t1/2 instead (note that t ≥ 1).

Proof. For each i ∈ [n], j ∈ [t], k ∈ [d], yi,jxi,j,k is a sub-exponential random variable with sub-

exponential norm ‖yi,jxi,j,k‖ψ1 ≤
√
s2
i + ‖βi‖22 = ρi.

By Bernstein’s inequality,

P

∣∣∣∣∣∣1t
t∑

j=1

yi,jxi,j,k − βi,k

∣∣∣∣∣∣ ≥ z
 ≤ 2 exp

(
−cmin

{
z2t

ρ2
i

,
zt

ρi

})
for some c > 0. Hence we have that with probability 1− 2δ, ∀ i ∈ [n] , k ∈ [d],∣∣∣∣∣∣1t

t∑
j=1

yi,jxi,j,k − βi,k

∣∣∣∣∣∣ ≤ ρi max

{
log (nd/δ)

ct
,

√
log (nd/δ)

ct

}
,

which implies ∥∥∥∥∥∥1

t

t∑
j=1

yi,jxi,j − βi

∥∥∥∥∥∥
2

≤
√
dρi max

{
log (nd/δ)

ct
,

√
log (nd/δ)

ct

}
.

Proposition A.3. For any v ∈ Sd−1

E

〈v,
1

t

t∑
j=1

yi,jxi,j − βi
〉2

 ≤ O (ρ2
i /t
)
.

Proof.

E

〈v,
1

t

t∑
j=1

yi,jxi,j − βi
〉2

 =
1

t2

t∑
j=1

t∑
j′=1

E
[
v> (yi,jxi,j − βi) v>

(
yi,j′xi,j′ − βi

)]

=
1

t2

t∑
j=1

t∑
j′=1

v> E
[
(yi,jxi,j − βi)

(
yi,j′xi,j′ − βi

)>]
v

where

E
[
(yi,jxi,j − βi)

(
yi,j′xi,j′ − βi

)>]
= E

[
xi,j

(
x>i,jβi + εi,j

)(
β>i xi,j′ + εi,j′

)
x>i,j′ −

(
x>i,jβi + εi,j

)
xi,jβ

>
i −

(
x>i,j′βi + εi,j′

)
xi,j′β

>
i + βiβ

>
i

]
= E

[
xi,jx

>
i,jβiβ

>
i xi,j′x

>
i,j′ + εi,jεi,j′xi,jx

>
i,j′ −

(
x>i,jβi

)2
−
(
x>i,j′βi

)2
+ βiβ

>
i

]
= E

[
xi,jx

>
i,jβiβ

>
i xi,j′x

>
i,j′ − βiβ>i

]
+ E

[
εi,jεi,j′xi,jx

>
i,j′

]
.
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Therefore, when j 6= j′,

E
[
(yi,jxi,j − βi)

(
yi,j′xi,j′ − βi

)>]
= 0.

Plugging back we have

E

〈v,
1

t

t∑
j=1

yi,jxi,j − βi
〉2

 =
1

t2

t∑
j=1

E
[(

v>xi,j

)2 (
β>i xi,j

)2
−
(
v>βi

)]2

+ v> E
[
ε2i,jxi,jx

>
i,j

]
v

≤ 1

t2

t∑
j=1

O
(
‖v‖22 ‖βi‖

2
2

)
+O

(
v>βi

)2
+ s2

i ‖v‖
2
2

≤ O
(
ρ2
i /t
)
.

Proposition A.4.

E

∥∥∥∥∥∥1

t

t∑
j=1

yi,jxi,j − βi

∥∥∥∥∥∥
2

2

 ≤ O (ρ2
i d/t

)
Proof.

E

〈1

t

t∑
j=1

(yi,jxi,j − βi) ,
1

t

t∑
j′=1

(
yi,j′xi,j′ − βi

) 〉
=

1

t2

t∑
j=1

t∑
j′=1

E
[
yi,jyi,j′x

>
i,jxi,j′ − β>i yi,j′xi,j′ − β>i yi,jxi,j + β>i βi

]

=
1

t2

t∑
j=1

t∑
j′=1

E
[
yi,jyi,j′x

>
i,jxi,j′ − β>i βi

]

=
1

t2

t∑
j=1

t∑
j′=1

E
[(
β>i xi,j + εi,j

)(
β>i xi,j′ + εi,j′

)
x>i,jxi,j′ − ‖βi‖

2
2

]

=
1

t2

t∑
j=1

t∑
j′=1

E
[
β>i xi,jx

>
i,jxi,j′x

>
i,j′βi + εi,jεi,j′x

>
i,jxi,j′ − ‖βi‖

2
2

]
.

The above quantity can be split into two terms, one is diagonal term, and the other is off-diagonal
term.

If j 6= j′, then

E
[
β>i xi,jx

>
i,jxi,j′x

>
i,j′βi + εi,jεi,j′x

>
i,jxi,j′

]
− ‖βi‖22 = 0,

and if j = j′, then

E
[
β>i xi,jx

>
i,jxi,j′x

>
i,j′βi + εi,jεi,j′x

>
i,jxi,j′ − ‖βi‖

2
2

]
= O

(
d ‖βi‖22

)
+ σ2

i d = O
(
ρ2
i d
)
.

Plugging back we get

E

∥∥∥∥∥∥1

t

t∑
j=1

yi,jxi,j − βi

∥∥∥∥∥∥
2

2

 ≤ 1

t2
· t · O

(
ρ2
i d
)

≤ O
(
ρ2
i d/t

)
.
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Definition A.5. For each i ∈ [n], define matrix Zi ∈ Rd×d as

Zi :=

1

t

t∑
j=1

yi,jxi,j

1

t

2t∑
j=t+1

yi,jx
>
i,j

− βiβ>i .
We can upper bound the spectral norm of matrix Zi,

Lemma A.6. Let Zi be defined as Definition A.5, let c2 > 1 denote some sufficiently large constant,
let δ ∈ (0, 1) denote the failure probability. Then we have : with probability 1− δ,

∀ i ∈ [n], ‖Zi‖2 ≤ c2 · d · ρ2
i · log2(nd/δ)/t

Proof. The norm of ‖Zi‖2 satisfies

‖Zi‖2 ≤

∥∥∥∥∥∥
1

t

t∑
j=1

yi,jxi,j − βi

1

t

2t∑
j=t+1

yi,jx
>
i,j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥βi
1

t

2t∑
j=t+1

yi,jx
>
i,j − β>i

∥∥∥∥∥∥
2

≤ c1

√
dρi log(nd/δ)t−1/2 ·

∥∥∥∥∥∥1

t

2t∑
j=t+1

yi,jxi,j

∥∥∥∥∥∥
2

+ c1

√
dρi log(nd/δ)t−1/2 · ‖βi‖2

= c1

√
dρi log(nd/δ)t−1/2 ·

∥∥∥∥∥∥1

t

2t∑
j=t+1

yi,jxi,j

∥∥∥∥∥∥
2

+ ‖βi‖2


≤ c1

√
dρi log(nd/δ)t−1/2 ·

∥∥∥∥∥∥1

t

2t∑
j=t+1

yi,jxi,j − βi

∥∥∥∥∥∥
2

+ 2 ‖βi‖2


≤ c1

√
dρi log(nd/δ)t−1/2 ·

(
O (1) ·

√
dρi log(nd/δ)t−1/2 + 2‖βi‖2

)
≤ O (1) · dρ2

i log2(nd/δ)/t

where the second step follows from Proposition A.1, the fourth step follows from triangle inequality,
the fifth step follows from Proposition A.1, and the last step follows ‖βi‖2 ≤ ρi.

Rescaling the δ completes the proof.

Definition A.7. Let c2 > 1 denote a sufficiently large constant. We define event E to be the event
that

∀ i ∈ [n], ‖Zi‖2 ≤ c2 · d · ρ2 · log2(nd/δ)/t.

We can apply matrix Bernstein inequality under a conditional distribution.

Proposition A.8. Let Zi be defined as Definition A.5. Let E be defined as Definition A.7. Then
we have ∥∥∥∥∥E

[
n∑
i=1

ZiZ
>
i

∣∣∣E]∥∥∥∥∥
2

= O
(
nρ4d/t

)
.
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Proof.∥∥∥E [ZiZ>i ]∥∥∥
2

= max
v∈Sd−1

E
v>

1

t

t∑
j=1

yi,jxi,j

2 ∥∥∥∥∥∥1

t

2t∑
j=t+1

yi,jxi,j

∥∥∥∥∥∥
2

2

−
(
v>βi

)2
‖βi‖22


= max

v∈Sd−1

E
v>

1

t

t∑
j=1

yi,jxi,j − βi

2 ∥∥∥∥∥∥1

t

2t∑
j=t+1

yi,jxi,j

∥∥∥∥∥∥
2

2

+ E

(v>βi

)2

∥∥∥∥∥∥
1

t

2t∑
j=t+1

yi,jxi,j

− βi
∥∥∥∥∥∥

2

2


. (ρ2

i /t) · (‖βi‖
2
2 + ρ2

i d/t) + ‖βi‖22 (ρ2
i d/t)

≤ (ρ2
i /t) · (ρ2

i + ρ2
i d/t) + ρ2

i · (ρ2
i d/t)

≤ 2ρ4
i d/t

2 + ρ4
i d/t

≤ 3ρ4
i d/t.

where the forth step follows from ‖βi‖2 ≤ ρi, the fifth step follows d/t ≥ 1, and the last step follows
from t ≥ 1.

Thus, ∥∥∥∥∥E
[

n∑
i=1

ZiZ
>
i |E

]∥∥∥∥∥
2

≤ 1

P [E ]

∥∥∥∥∥E
[

n∑
i=1

ZiZ
>
i

]∥∥∥∥∥
2

= O
(
nρ4d/t

)
.

where n comes from repeatedly applying triangle inequality.

Applying matrix Bernstein inequality, we get

Lemma A.9. Let Zi be defined as Definition A.5. For any ε̃ ∈ (0, 1) and δ ∈ (0, 1), if

n = Ω

(
d

t
log2 (nd/δ) max

{
1

ε̃2
,
1

ε̃
log

nd

δ

})
,

then with probability at least 1− δ, ∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

≤ ε̃ · ρ2.

Proof. Recall that E is defined as Definition A.7.
Using matrix Bernstein inequality (Proposition D.5), we get for any z > 0,

P

[∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

≥ z
∣∣∣ E] ≤ d · exp

(
− z2n/2

ρ4d/t+ zcdρ2 log2(nd/δ)/t

)
.

For z = ε̃ρ2, we get

P

[∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥
2

≥ ε̃ρ2
∣∣∣ E] ≤ d · exp

(
− ε̃2n/2

d/t+ ε̃cd log2(nd/δ)/t

)
(14)
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for some c > 0. If we want to bound the right hand side of Equation (14) by δ, it is sufficient to have

ε̃2n/2

d/t+ ε̃cd log2(nd/δ)/t
≥ log

nd

δ

or, n &
d

t
log2 (nd/δ) max

{
1

ε̃2
,
1

ε̃
log

nd

δ

}
(15)

Therefore, if ε̃ log(nd/δ) & 1, we just need n & d
ε̃t log3 (nd/δ), else we need n & d

tε̃2
log2(nd/δ) thus

completing the proof.

Lemma A.10. If X = 1
n

n∑
i=1

βiβ
>
i where βi = wi with probability pi, and M =

k∑
j=1

piwiw
>
i as its

expectation, then for any δ ∈ (0, 1) we have

P
[
‖X−M‖2 ≤ ε̃ρ

2
]
≥ 1− δ. (16)

if n = Ω
(

log3(k/δ)
ε̃2

)
.

Proof. Let p̃j = 1
n

n∑
i=1

1 {wj = βi} ∀ j ∈ [k], then X =
k∑
j=1

p̃jwjw
>
j . Let Sj = (p̃j − pj)wjw

>
j ∀j ∈

[k], then we have the following for all j ∈ [k],

E [Sj ] = 0

‖Sj‖2 ≤ ρ
2

√
3 log(k/δ)

n
(from Proposition D.7) (17)∥∥∥∥∥∥

k∑
j=1

E
[
S>j Sj

]∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑
j=1

E
[
(p̃j − pj)2

]
‖wj‖22 wjw

>
j

∥∥∥∥∥∥
2

≤ 3ρ2 log(k/δ)

n

∥∥∥∥∥∥
k∑
j=1

pjwjw
>
j

∥∥∥∥∥∥
2

(from Proposition D.7)

≤ 3ρ4 log(k/δ)

n
. (18)

Conditioning on the event E :=
{
|p̃j − pj | ≤

√
3 log(k/δ)/n

}
, from matrix Bernstein D.5 we have

P

∥∥∥∥∥∥
k∑
j=1

Sj

∥∥∥∥∥∥
2

≥ z
∣∣∣ E
 ≤ 2k exp

 −z2/2

3ρ4 log(k/δ)
n + ρ2z

3

√
3 log(k/δ)

n


=⇒ P

∥∥∥∥∥∥
k∑
j=1

Sj

∥∥∥∥∥∥
2

≤ 3ρ2 log3/2(k/δ)√
n

∣∣∣ E
 ≥ 1− δ (19)

Since P [E ] ≥ 1− δ, we have

P

∥∥∥∥∥∥
k∑
j=1

Sj

∥∥∥∥∥∥
2

≤ ε̃ρ2

 ≥ 1− δ (20)

for n = Ω
(

log3(k/δ)
ε̃2

)
.
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Lemma A.11. Given k vectors x1,x2, · · · ,xk ∈ Rd. For each i ∈ [k], we define Xi = xix
>
i . For

every γ ≥ 0, and every PSD matrix M̂ ∈ Rd×d such that∥∥∥∥∥M̂−
k∑
i=1

Xi

∥∥∥∥∥
2

≤ γ, (21)

let U ∈ Rd×k be the matrix consists of the top-k singular vectors of M̂, then for all i ∈ [k],∥∥∥x>i (I−UU>
)∥∥∥

2
≤ min

{
γ‖xi‖2/σmin ,

√
2 (γ‖xi‖2)1/3

}
,

where σmin is the smallest non-zero singular value of
∑

i∈[k] Xi.

Proof. From the gap-free Wedin’s theorem in (Allen-Zhu & Li, 2016, Lemma B.3), it follows that∥∥∥(I−UU>)Vj

∥∥∥
2
≤ γ/σj , (22)

where Vj = [v1 . . . vj ] is the matrix consisting of the j singular vectors of
∑

i′∈[k] Xi′ corresponding
to the top j singular values, and σj is the j-th singular value. To get the first term on the upper
bound, notice that as xi lie on the subspace spanned by Vj where j is the rank of

∑
i′∈[k] Xi′ . It

follows that ∥∥∥(I−UU>
)

VjV
T
j xi

∥∥∥
2
≤ ‖xi‖2 γ/σj ≤ ‖xi‖2 γ/σmin.

Next, we optimize over this choice of j to get the tightest bound that does not depend on the
singular values.∥∥∥(I−UU>

)
xi

∥∥∥2

2
=
∥∥∥(I−UU>

)
VjV

>
j xi

∥∥∥2

2
+
∥∥∥(I−UU>

)(
I−VjV

>
j

)
xi

∥∥∥2

2

≤ (γ2/σ2
j ) ‖xi‖

2
2 + σj+1 ,

for any j ∈ [k] where we used
∥∥∥(I−VjV

>
j

)
xi

∥∥∥2

2
≤ σj+1. This follows from

σj+1 =

∥∥∥∥∥∥
(
I−VjV

>
j

) ∑
i′∈[k]

Xi′

(
I−VjV

>
j

)∥∥∥∥∥∥
2

≥
∥∥∥(I−VjV

>
j

)
xix
>
i

(
I−VjV

>
j

)∥∥∥
2

=
∥∥∥(I−VjV

>
j

)
xi

∥∥∥2

2
.

Optimal choice of j minimizes the upper bound, which happens when the two terms are of similar

orders. Precisely, we choose j to be the largest index such that σj ≥ γ2/3 ‖xi‖2/32 (we take j = 0 if

σ1 ≤ γ2/3 ‖xi‖2/32 ). This gives an upper bound of 2γ2/3 ‖xi‖2/32 . This bound is tighter by a factor of
k2/3 compared to a similar result from (Li & Liang, 2018, Lemma 5), where this analysis is based
on.

Proof of Lemma 5.1. We combine Lemma A.11 and Lemma A.9 to compute the proof. Let ε > 0
be the minimum positive real such that for xi =

√
piwi, γ = ε̃ρ2, σmin = λmin, we have

√
pi

∥∥∥(I−UU>
)

wi

∥∥∥
2
≤ min

{
ε̃ρ3√pi/λmin,

√
2 · ε̃1/3ρp1/6

i

}
≤ ερ√pi

The above equation implies that

ε̃ = max

{
λminε

ρ2
,
pminε

3

2
√

2

}
.
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Since
∥∥∥∑k

i=1 p̃iwiw
>
i −

∑k
i=1 piwiw

>
i

∥∥∥
2

+
∥∥∥M̂−∑k

i=1 piwiw
>
i

∥∥∥
2
≤ O

(
ε̃ρ2
)

for

n = Ω

(
max

{
1

ε̃2
log3(k/δ),

d

tε̃2
log2 (nd/δ) ,

d

tε̃
log3 (nd/δ)

})
from Lemma A.9 and Proposition A.10, we get∥∥∥(I−UU>

)
wi

∥∥∥
2
≤ ερ ∀ i ∈ [k]

with probability at least 1− δ.

A.2 Proof of Lemma 5.2

We start with the following two proposition which shows that the mean of our distance estimator is
well separated between the in-cluster tasks and the inter-cluster tasks.

Proposition A.12. Recall that matrix U satisfies Equation (8) with error ε. If ∆ ≥ 4ρε, then
∀ i, j ∈ [n] such that βi 6= βj,

E
[(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)]
≥ ∆2/4,

and ∀ i, j ∈ [n] such that βi = βj,

E
[(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)]
= 0.

Proof. If βi 6= βj ,

E
[(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)]
=
∥∥∥UU> (βi − βj)

∥∥∥2

2

=
∥∥∥UU>βi − βi + βi − βj + βj −UU>βj

∥∥∥2

2

≥
(
‖βi − βj‖2 − 2ερ

)2
≥ ∆2/4.

The proof is trivial for βi = βj .

Proposition A.13.

Var

[(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)]
≤ O

(
ρ4 · (t+ k)/t2

)
.

Proof. If βi 6= βj , then

Var

[(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)]
= E

[((
β̂

(1)
i − β̂

(1)
j

)>
UU>

(
β̂

(2)
i − β̂

(2)
j

))2
]
−
(

(βi − βj)>UU> (βi − βj)
)2

=
1

t4

t,2t∑
a,a′=1
b,b′=t+1

E
[(

(yi,axi,a − yj,axj,a)>UU>(yi,bxi,b − yj,bxj,b)
)(

(yi,a′xi,a′ − yj,a′xj,a′)>UU>(yi,b′xi,b′ − yj,b′xj,b′)
)]

− (βi − βj)>UU>(βi − βj)(βi − βj)>UU>(βi − βj).
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For each term in the summation, we classify it into one of the 3 different cases according to a, b, a′, b′:

1. If a 6= a′ and b 6= b′, the term is 0.

2. If a = a′ and b 6= b′, the term can then be expressed as:

E
[(

(yi,axi,a − yj,axj,a)>UU>(yi,bxi,b − yj,bxj,b)
)(

(yi,a′xi,a′ − yj,a′xj,a′)>UU>(yi,b′xi,b′ − yj,b′xj,b′)
)]

− (βi − βj)>UU>(βi − βj)(βi − βj)>UU>(βi − βj)

= E
[(

(yi,axi,a − yj,axj,a)>UU>(βi − βj)
)2
]
−
(

(βi − βj)>UU>(βi − βj)
)2

= E
[(
yi,ax

>
i,aUU>(βi − βj)

)2
]
−
(
β>i UU>(βi − βj)

)2

+ E
[(
yj,ax

>
j,aUU>(βi − βj)

)2
]
−
(
β>j UU>(βi − βj)

)2

= O
(
ρ4
)
.

The last equality follows from the sub-Gaussian assumption of x.

3. If a 6= a′ and b = b′, this case is symmetric to the last case and 3σ2
aσ

2
a′ is an upper bound.

4. If a = a′ and b = b′, the term can then be expressed as:

E
[(

(yi,axi,a − yj,axj,a)>UU>(yi,bxi,b − yj,bxj,b)
)2
]
−
(

(βi − βj)>UU>(βi − βj)
)2

= E
[
y2
i,b((yi,axi,a − yj,axj,a)>UU>xi,b)

2
]

+ E
[
y2
j,b((yi,axi,a − yj,axj,a)>UU>xj,b)

2
]

− 2E
[
(yi,axi,a − yj,axj,a)>UU>(yi,bxi,b)(yi,axi,a − yj,axj,a)>UU>(yj,bxj,b)

]
−
(

(βi − βj)>UU>(βi − βj)
)2
.

First taking the expectation over xi,b, yi,b,xj,b, yj,b, we get the following upper bound

c3ρ
2 E
[∥∥∥(yi,axi,a − yj,axj,a)>UU>

∥∥∥2

2

]
− 2E

[
(yi,axi,a − yj,axj,a)>UU>βi(yi,axi,a − yj,axj,a)>UU>βj

]
for some c3 > 0. Since

E
[
(yi,axi,a − yj,axj,a)>UU>βi(yi,axi,a − yj,axj,a)>UU>βj

]
. ρ2 E

[∥∥∥(yi,axi,a − yj,axj,a)>UU>
∥∥∥2

2

]
,

we have the following upper bound:

. E
[∥∥∥(yi,axi,a − yj,axj,a)>UU>

∥∥∥2

2

]
. E

[∥∥∥(yi,axi,a)
>U
∥∥∥2

2

]
+ E

[∥∥∥(yj,axj,a)
>U
∥∥∥2

2

]
.

Since E
[(

(yi,axi,a)
>ul
)2] ≤ O (ρ2

)
∀ l ∈ [k], we finally have a O (k) upper bound for this

case.
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The final step is to sum the contributions of these 4 cases. Case 2 and 3 have O
(
t3
)

different
quadruples (a, b, a′, b′). Case 4 has O

(
t2
)

different quadruples (a, b, a′, b′). Combining the resulting
bounds yields an upper bound of:

O
(
ρ4 · (t+ k)/t2

)
.

We now have all the required ingredients for the proof of Lemma 5.2

Proof of Lemma 5.2. For each pair i, j, we repeatedly compute(
β̂

(1)
i − β̂

(1)
j

)>
UU>UU>

(
β̂

(2)
i − β̂

(2)
j

)
log(n/δ) times, each with a batch of new sample of size ρ2

√
k/∆2, and take the median of these

estimates. With probability 1− δ̃, it holds that for all βi 6= βj , the median is greater than c∆2, and
for all βi = βj the median is less than c∆2 for some constant c. Hence the single-linkage algorithm
can correctly identify the k clusters.

Conditioning on the event of perfect clustering, the cluster sizes are distributed according to a
multinomial distribution, which from Proposition D.7 can be shown to concentrate as

|pi − p̃i| ≤
√

3 log(k/δ)

n
pi ≤ pi/2

with probability at least 1−δ by our assumption that n = Ω
(

log(k/δ)
pmin

)
, which implies that p̂i ≥ pi/2.

For each group, we compute the corresponding average of U>β̂i as

U>w̃l :=
1

np̃lt

∑
i3βi=wl

t∑
j=1

yi,jU
>xi,j ,

which from Proposition A.1 would satisfy

∥∥∥U> (w̃l −wl)
∥∥∥

2
.
√
kρi max

{
log(k2/δ)

np̃lt
,

√
log(k2/δ)

np̃lt

}
≤ ε̃ρi.

The last inequality holds due to the condition on n.
The estimate for r2

l := s2
l + ‖wl − w̃l‖22 ∀ l ∈ [k] is

r̃2
l =

1

np̃lt

∑
i3βi=wl

t∑
j=1

(
x>i,j (wl − w̃l) + εi,j

)2

where xi,j and yi,j are fresh samples from the same tasks. The expectation of r̂2
l can be computed

as

E
[
r̃2
l

]
=

1

np̃lt

∑
i3βi=wi

t∑
j=1

E
[(

x>i,j (wl − w̃l) + εi,j

)2
]

= s2
l + ‖wl − w̃l‖22 = r2

l
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We can compute the variance of r̃2
l like

Var
[
r̃2
l

]
=

1

np̃lt

∑
i3βi=wi

t∑
j=1

Var

[(
x>i,j (wl − w̃l) + εi,j

)2
]

=
1

np̃lt

∑
i3βi=wi

t∑
j=1

[
E
[(

x>i,j (wl − w̃l) + εi,j

)4
]
−
(
s2
l + ‖wl − w̃l‖22

)2
]

Since
(
x>i,j (wl − w̃l) + εi,j

)2
is a sub-exponential random variable, we can use Bernstein’s concen-

tration inequality to get

P
[∣∣r̃2

l − r2
l

∣∣ > z
]
≤ 2 exp

{
−min

{
z2t

r4
l

,
zt

r2
l

}}

=⇒
∣∣r̃2
l − r2

l

∣∣ < r2
l max


√

log 1
δ

np̃lt
,
log 1

δ

np̃lt

 with probability at least 1− δ,

≤ r2
l

ε̃√
k

where the last inequality directly follows from the condition on n.

A.3 Proof of Lemma 5.3

Before proving Lemma 5.3, we first show that with the parameters wi, r
2
i estimated with accuracy

stated, for all i ∈ [k] in the condition of Lemma 5.3, we can correctly classify a new task using only
Ω (log k) dependency of k on the number of examples tout.

Lemma A.14 (Classification). Given estimated parameters satisfying ‖w̃i −wi‖2 ≤ ∆/10, (1−
∆2/50)r̃2

i ≤ s2
i + ‖w̃i −wi‖22 ≤ (1 + ∆2/50)r̃2

i for all i ∈ [k], and a new task with tout ≥
Θ
(
log(k/δ)/∆4

)
samples whose true regression vector is β = wh, our algorithm predicts h correctly

with probability 1− δ.

Proof. Given a new task with tout training examples, xi, yi = w>xi + εi for i ∈ [tout] where the true
regression vector is β = wh and the true variance of the noise is σ2 = s2

h. Our algorithm compute
the the following “log likelihood” like quantity with the estimated parameters, which is defined to be

l̂i :=−
tout∑
j=1

(
yj − x>j w̃i

)2
/
(
2r̃2
i

)
+ tout · log (1/r̃i) (23)

=−
tout∑
j=1

(
εj + x>j (wh − w̃i)

)2
/
(
2r̃2
i

)
+ tout · log(1/r̃i),

and output the classification as arg maxi∈[k] l̂i.

Our proof proceeds by proving a lower bound on the likelihood quantity of the true index l̂h,
and an upper bound on the likelihood quantity of the other indices l̂i for i ∈ [k]\{h}, and we then
argue that the l̂h is greater than the other l̂i’s for i ∈ [k]\{h} with high probability, which implies
our algorithm output the correct classification with high probability.
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The expectation of l̂h is

E
[
l̂h

]
= −tout ·

(
s2
h + ‖wh − w̃h‖22

)
/
(
2r̃2
h

)
+ tout · log(1/r̃h).

Since
(
εj + x>j (wh − w̃h)

)2
/
(
2r̃2
h

)
is a sub-exponential random variable with sub-exponential norm

at most O
((
s2
h + ‖wh − w̃h‖22

)
/r̃2
h

)
= O

(
r2
h/r̃

2
h

)
, we can apply Bernstein inequality (Vershynin,

2018, Theorem 2.8.1) to l̂h and get

P
[∣∣∣l̂h − E

[
l̂h

]∣∣∣ > z
]
≤ 2 exp

{
−cmin

{
z2

toutr4
h/r̃

4
h

,
z

r2
h/r̃

2
h

}}
,

which implies that with probability 1− δ/k,∣∣∣l̂h − E
[
l̂h

]∣∣∣ . r2
h/r̃

2
h ·max

{√
tout log(k/δ), log(k/δ)

}
.

Using the fact that tout ≥ C log(k/δ) for some C > 1, we have that with probability 1− δ/k,

l̂h ≥ −
(
tout + c

√
tout log(k/δ)

)
· r2
h/
(
2r̃2
h

)
+ tout · log(1/r̃h)

for some constant c > 0.
For i 6= h, the expectation of l̂i is at most

E
[
l̂i

]
≤ −tout ·

(
s2
i + (∆− ‖wi − w̃i‖2)2

)
/
(
2r̃2
i

)
+ tout · log (1/r̃i) .

Since
(
εi + x>j (wh − w̃i)

)2
/
(
2r̃2
i

)
is a sub-exponential random variable with sub-exponential norm

at most O
((
s2
i + (∆ + ‖wi − w̃i‖2)2

)
/r̃2
i

)
. Again we can apply Bernstein’s inequality and get

with probability 1− δ

l̂i ≤ − tout ·
(
s2
i + (∆− ‖wi − w̃i‖2)2

)
/
(
2r̃2
i

)
+ tout log (1/r̃i)

+ c
√
tout log(k/δ) ·

(
s2
i + (∆ + ‖wi − w̃i‖2)2

)
/
(
2r̃2
i

)
for a constant c > 0.

Using our assumption that ‖wi − w̃i‖2 ≤ ∆/10 for all i ∈ [k], we get

l̂i ≤
(
−tout + c′

√
tout log(k/δ)

)
·
(
s2
i + 0.5∆2

)
/
(
2r̃2
i

)
+ 0.5tout log

(
1/r̃2

i

)
for some constant c′ > 0. We obtain a worst case bound by taking the maximum over all possible
value of r̃i as

l̂i ≤ − 0.5tout − 0.5tout log
((

1− c′
√

log(k/δ)/tout

) (
s2
i + 0.5∆2

))
,

where we have taken the maximum over all possible values of r̂i.
Using the assumption that

r2
h/r̃

2
h ≤ 1 + ∆2/50
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and tout ≥ C log(k/δ) for some constant C > 1, we obtain that

− tout · r2
h/(2r̃

2
h) + 0.5tout ≥ tout∆

2/100, and

− c
√
tout log(k/δ) · r2

h/
(
2r̃2
h

)
+ 0.5tout log

(
1− c′

√
log(k/δ)/tout

)
= O

(√
tout log(k/δ)

)
.

Further notice that

(
1 + ∆2/5

)
r̃2
h ≤

(
1 + ∆2/5

)
1−∆2/50

(
s2
h + ∆2/100

)
≤ s2

h + ∆2/2.

since s2
h ≤ 1, and ∆ ≤ 2. Plugging in these facts into l̂h − l̂i and applying the assumption that(

s2
h + ∆2/2

)
/r̃2
h ≥

(
1 + ∆2/5

)
we get

l̂h − l̂i ≥ 0.5tout log
(
1 + ∆2/5

)
− tout∆

2/100−O
(√

tout log(k/δ)
)

By the fact that log
(
1 + ∆2/5

)
−∆2/50 ≥ ∆2/5000 for all ∆ ≤ 50, the above quantity is at least

Θ
(
tout∆

2
)
−Θ

(√
tout log(k/δ)

)
. (24)

Since tout ≥ Θ
(
log(k/δ)/∆4

)
, we have that with probability δ, for all i ∈ [k]\{h}, it holds that

l̂h − l̂i > 0, which implies the correctness of the classification procedure.

Proof of Lemma 5.3. Given n i.i.d. samples from our data generation model, by the assumption

that n = Ω
(
d log2(k/δ)
pminε2t

)
= Ω

(
log(k/δ)
pmin

)
and from Proposition D.7, it holds that the number of tasks

such that β = wi is np̂i ≥ 1
2npi with probability at least 1− δ. Hence, with this probability, there

exists at least npi/10 i.i.d. examples for estimating wi and s2
i . By Proposition D.9, it holds that

with probability 1− δ, for all i ∈ [k], our estimation satisfies

‖ŵi −wi‖22 = O
(
σ2 (d+ log(k/δ))

npit

)
, and

∣∣ŝ2
i − s2

i

∣∣ = O
(

log(k/δ)√
npit− d

s2
i

)
.

By Proposition D.7, it holds that

|p̂i − pi| ≤
√

3 log(k/δ)

n
pi

Since n = Ω
(
d log2(k/δ)
pminε2t

)
, we finally get for all i ∈ [k]

‖ŵi −wi‖2 ≤ εsi ,∣∣ŝ2
i − s2

i

∣∣ ≤ εs2
i√
d
, and

|p̂i − pi| ≤ min
{
pmin/10, εpi

√
t/d
}
.
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B Proof Theorem 2

We first bound the expected error of the maximum a posterior (MAP) estimator.

Lemma B.1. Given estimated parameters satisfying ‖ŵi −wi‖2 ≤ ∆/10,
(
1−∆2/50

)
ŝ2
i ≤ s2

i +

‖ŵi −wi‖22 ≤
(
1 + ∆2/50

)
ŝ2
i for all i ∈ [k], and a new task with τ ≥ Θ

(
log(k/δ)/∆4

)
samples

D = {xi, yi}τi=1. Define the maximum a posterior (MAP) estimator as

β̂MAP(D) := ŵî

where

î := arg max
i∈[k]

 τ∑
j=1

−
(
yj − ŵ>i xj

)2
2σ̂2

i

+ τ log (1/σ̂i) + log (p̂i)

 .

Then, the expected error of the MAP estimator is bound as

E
T new∼P(T )

E
D∼T new

E
{x,y}∼T new

[(
x>β̂MAP(D)− y

)2
]

≤δ +
k∑
i=1

pi ‖wi − ŵi‖22 +
k∑
i=1

pis
2
i

Proof. The proof is very similar to the proof of Lemma A.14. The log of the posterior probability
given the training data D under the estimated parameters is

l̂i :=−
τ∑
j=1

(
yj − x>j ŵi

)2
/
(
2ŝ2
i

)
+ τ · log (1/ŝi) + log (p̂i) , (25)

which is different from Equation 23 just by a log(1/p̂i) additive factor. Hence, given that the true
regression vector of the new task T new is wh, it follows from Equation 24 that l̂h− l̂i with probability
at least 1− δ is greater than

Θ(τ∆2)−Θ
(√

τ log(k/δ)
)

+ log (p̂h/p̂i) ,

which under the assumption that |p̂i − pi| ≤ pi/10 is greater than

Θ(τ∆2)−Θ
(√

τ log(k/δ)
)
− log(1/ph)− log(10/9). (26)

If ph ≥ δ/k, by our assumption that τ ≥ Θ
(
log(k/δ)/∆4

)
, it holds that l̂h − l̂i > 0 for all i 6= h,

and hence the MAP estimator output ŵh with probability at least 1− δ. With the remaining less
than δ probability, the MAP estimator output β̂MAP = ŵi for some other i 6= h which incurs `2
error ‖β̂MAP −wh‖2 ≤ ‖β̂MAP‖@ + ‖wh‖2 ≤ 2.

If ph ≤ δ/k, we pessimistically bound the error of β̂MAP by ‖β̂MAP −wh‖ ≤ 2.
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To summarize, notice that

E
T new∼P(T )

E
D∼T new

E
{x,y}∼T new

[(
x>β̂MAP(D)− y

)2
]

= E
T new∼P(T )

E
D∼T new

[∥∥∥β̂MAP(D)−wh

∥∥∥2

2
+ s2

h

]
≤

k∑
i=1

pi

(
1 {pi ≥ δ/k}

(
4δ + (1− δ) ‖wi − ŵi‖22

))
+

k∑
i=1

4pi1 {pi ≤ δ/k}+
k∑
i=1

pis
2
i

≤4δ +

k∑
i=1

pi‖wi − ŵi‖2 + 4δ +

k∑
i=1

pis
2
i

=8δ +
k∑
i=1

pi‖wi − ŵi‖2 +
k∑
i=1

pis
2
i .

Replacing 8δ by δ concludes the proof.

Next, we bound the expected error of the posterior mean estimator.

Lemma B.2. Given estimated parameters satisfying ‖ŵi −wi‖2 ≤ ∆/10, s2
i + ‖ŵi −wi‖22 ≤

(1 + ∆2/50)ŝ2
i , s

2
i + ∆2/2 ≥ (1 + ∆2/5)ŝ2

i for all i ∈ [k], and a new task with τ ≥ Θ
(
log(k/δ)/∆4

)
samples D = {xi, yi}τi=1. Define the posterior mean estimator as

β̂Bayes(D) :=

∑k
i=1 L̂iŵi∑k
i=1 L̂i

where

L̂i := exp

(
−

τ∑
i=1

(
yj −w>i xj

)2
2σ̂2

i

+ τ log(1/σ̂i) + log(p̂i)

)
.

Then, the expected error of the posterior mean estimator is bound as

ET new∼P(T )ED∼T newE{x,y}∼T new

[(
x>β̂Bayes(D)− y

)2
]

≤δ +
k∑
i=1

pi ‖wi − ŵi‖22 +
k∑
i=1

pis
2
i

Proof. This proof is very similar to the proof of Lemma B.1. Notice that

E
T new∼P(T )

E
D∼T new

E
{x,y}∼T new

[(
x>β̂Bayes(D)− y

)2
]

= E
T new∼P(T )

E
D∼T new

[∥∥∥β̂Bayes(D)−wh

∥∥∥2

2
+ s2

h

]
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where wh is defined to be the true regression vector of the task T new.∥∥∥β̂Bayes(D)−wh

∥∥∥2

2

≤

‖ŵh −wh‖2 +

(
1− L̂h∑k

i=1 L̂i

)
‖wh‖2 +

∑
j 6=h

L̂j∑k
i=1 L̂i

‖wj‖2

2

≤

(
‖ŵh −wh‖2 + 2

(
1− L̂h∑k

i=1 L̂i

))2

≤

‖ŵh −wh‖2 + 2
∑
i 6=h

L̂i/L̂h

2

(27)

Notice that

L̂i/L̂h = exp(l̂i − l̂h)

where li is the logarithm of the posterior distribution as defined in Equation 25. Therefore we can
apply Equation 26 and have that with probability δ,

l̂i − l̂h ≤ − log(k/δ)/∆2 ≤ − log(k/δ)

for τ = Ω(log(k/δ)/∆4), which is equivalent to

L̂i/L̂h ≤ δ/k.

Plugging this into Equation 27 yields for a fixed T new, with probability 1− δ,

∥∥∥β̂Bayes(D)−wh

∥∥∥2

2
≤

‖ŵh −wh‖2 + 2
∑
i 6=h

L̂i/L̂h

2

≤‖ŵh −wh‖22 + 4δ2 + 4δ ‖ŵh −wh‖2
≤‖ŵh −wh‖22 + 8δ,

and the error is at most 4 for the remaining probability δ. Hence we get for a fixed T new

ED∼T new

[∥∥∥β̂Bayes(D)−wh

∥∥∥2

2
+ s2

h

]
≤ ‖ŵh −wh‖22 + s2

h + 12δ.

Finally taking the randomess of T new into account, we have

ET new∼P(T )ED∼T newE{x,y}∼T new

[(
x>β̂Bayes(D)− y

)2
]

≤12δ +
k∑
i=1

pi ‖wi − ŵi‖22 +
k∑
i=1

pis
2
i

Replacing 12δ by δ concludes the proof.

33



C Proof of Remark 4.6

We construct a worst case example and analyze the expected error of the Bayes optimal predictor.
We choose si = σ, pi = 1/k, and wi =

(
∆/
√

2
)
ei for all i ∈ [k]. Given a new task with τ training

examples, we assume Gaussian input xj ∼ N (0, Id) ∈ Rd, and Gaussian noise yj = β>xj + εj ∈ R
with εj ∼ N (0, σ2) i.i.d. for all j ∈ [τ ]. Denote the true model parameter by β = wh for some
h ∈ [k], and the Bayes optimal estimator is

β̂ =

[
k∑
i=1

Li

]−1 k∑
i=1

Liwi,

where Li := exp
(
− 1

2σ2

∑τ
j=1(yj −w>i xj)

2
)

. The squared `2 error is lower bounded by

∥∥∥β̂ −wh

∥∥∥2

2
≥

∥∥∥∥∥∥
[

k∑
i=1

Li

]−1 ∑
i∈[k]\{h}

Liwh

∥∥∥∥∥∥
2

2

=
∆2
(∑

i∈[k]\{h} Li/Lh

)2

2
(

1 +
∑

i∈[k]\{h} Li/Lh

)2 (28)

Let us define li = logLi, which is

li =− 1

2σ2

τ∑
j=1

(
yj − x>j wi

)2

=− 1

2σ2

τ∑
j=1

(
εj + x>j (wh −wi)

)2

Notice that for all i ∈ [k] \ {h}, E [li] = − τ
2 (1 + ∆2/σ2). Using Markov’s inequality and the fact

that li ≤ 0, we have that for each fixed i ∈ [k] \ {h},

P [ li ≥ 3E [li] ] ≥ 2/3 .

For each i ∈ [k] \ {h}, define an indicator random variable Ii = 1 {li ≥ 3E [li]}. The expectation is
lower bounded by

E

 ∑
i∈[k]\{h}

Ii

 ≥ 2

3
(k − 1) .

The expectation is upper bounded by

E

 ∑
i∈[k]\{h}

Ii

 ≤ P

 ∑
i∈[k]\{h}

Ii ≥
k − 1

3

 · (k − 1)

+

1− P

 ∑
i∈[k]\{h}

Ii ≥
k − 1

3

 · k − 1

3
.
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Combining the above two bounds together, we have

P

 ∑
i∈[k]\{h}

Ii ≥
k − 1

3

 ≥ 1/2.

Hence with probability at least 1/2,∑
i∈[k]\{h}

eli−lh ≥
∑

i∈[k]\{h}

eli ≥
∑

i∈[k]\{h}

Iie
3E[li]

≥ k − 1

3
e−

3τ
2 (1+∆2/σ2) ,

which implies that Eq. (28) is greater than ∆2/8. Hence the expected `2 error of the Bayes optimal

estimator is Ex,ε
[
(ŷ − y)2

]
= E

[((
β − β̂

)>
x + ε

)2
]

=
∥∥∥β − β̂∥∥∥2

2
+ σ2 = ∆2/8 + σ2.

D Technical definitions and facts

Definition D.1 (Sub-Gaussian random variable). A random variable X is said to follow a sub-
Gaussian distribution if there exists a constant K > 0 such that

P [|X| > t] ≤ 2 exp
(
−t2/K2

)
∀ t ≥ 0.

Definition D.2 (Sub-exponential random variable). A random variable X is said to follow a
sub-exponential distribution if there exists a constant K > 0 such that

P [|X| > t] ≤ 2 exp (−t/K) ∀ t ≥ 0.

Definition D.3 (Sub-exponential norm). The sub-exponential norm of a random variable X is
defined as

‖X‖ψ1
:= sup

p∈N
p−1 (E [|X|p])1/p .

A random variable is sub-exponential if its sub-exponential norm is finite.

Fact D.4 (Gaussian and sub-Gaussian 4-th moment condition). Let v and u denote two fixed
vectors, we have

E
x∼N (0,I)

[(
v>x

)2 (
u>x

)2
]

= ‖u‖22 · ‖v‖22 + 2〈u,v〉2.

If x is a centered sub-Gaussian random variable with identity second moment, then

E
[(

v>x
)2 (

u>x
)2
]

= O
(
‖u‖22 · ‖v‖22

)
.

Proposition D.5 (Matrix Bernstein inequality, Theorem 1.6.2 in Tropp et al. (2015)). Let S1, . . . ,Sn
be independent, centered random matrices with common dimension d1 × d2, and assume that each
one is uniformly bounded E [Sk] = 0 and ‖Sk‖2 ≤ L ∀ k = 1, . . . , n.

Introduce the sum

Z :=

n∑
k=1

Sk
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and let v(Z) denote the matrix variance statistic of the sum:

v(Z) := max
{∥∥∥E [ZZ>

]∥∥∥
2
,
∥∥∥E [Z>Z

]∥∥∥
2

}
Then

P [‖Z‖2 ≥ t] ≤ (d1 + d2) exp

{
−t2/2

v(Z) + Lt/3

}
for all t ≥ 0.

Fact D.6 (Hoeffding’s inequality Hoeffding (1963)). Let X1, . . . , Xn be independent random variables
with bounded interval 0 ≤ Xi ≤ 1. Let X = 1

n

∑n
i=1Xi. Then

P
[∣∣X − E

[
X
]∣∣ ≥ z] ≤ 2 exp

{
−2nz2

}
.

Proposition D.7 (`∞ deviation bound of multinomial distributions). Let p = {p1, . . . , pk} be a
vector of probabilities (i.e. pi ≥ 0 for all i ∈ [k] and

∑k
i=1 pi = 1). Let x ∼ multinomial(n,p) follow

a multinomial distribution with n trials and probability p. Then with probability 1− δ, for all i ∈ [k],∣∣∣∣ 1nxi − pi
∣∣∣∣ ≤

√
3 log(k/δ)

n
pi,

which implies ∥∥∥∥ 1

n
x− p

∥∥∥∥
∞
≤
√

3 log(k/δ)

n
.

for all i ∈ [k].

Proof. For each element xi, applying Chernoff Bound D.8 with z =

√
3 log(k/δ)

nE[X]
and taking a union

bound over all i, we get ∣∣∣∣ 1nxi − pi
∣∣∣∣ ≤

√
3 log(k/δ)pi

n
.

for all i ∈ [k].

Fact D.8 (Chernoff Bound). Let X1, . . . , Xn be independent Bernoulli random variables. Let
X = 1

n

∑n
i=1Xi. Then for all 0 < δ ≤ 1

P
[∣∣X − E

[
X
]∣∣ ≥ z E [X]] ≤ exp

{
−z2nE

[
X
]
/3
}
.

Proposition D.9 (High probability bound on the error of random design linear regression).
Consider the following linear regression problem where we are given n i.i.d. samples

xi ∼ D , yi = β>xi + εi , i ∈ [n]

where D is a d-dimensional (d < n) sub-Gaussian distribution with constant sub-gaussian norm,
E [xi] = 0, E

[
xix
>
i

]
= Id, and εi is a sub-gaussian random variable and satisfies E [εi] = 0,

E
[
ε2i
]

= σ2.

1. Then, with probability 1−δ, the ordinary least square estimator β̂ := arg minw

∑n
i=1

(
yi −w>xi

)2
satisfies ∥∥∥β̂ − β∥∥∥2

2
≤ O

(
σ2(d+ log(1/δ))

n

)
.
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2. Define the estimator of the noise σ̂2 as

σ̂2 :=
1

n− d

n∑
i=1

(
yi − β̂>xi

)2
.

Then with probability 1− δ, it holds that

|σ̂2 − σ2| ≤ log(1/δ)√
n− d

σ2.

Proof. (Hsu et al., 2012, Remark 12) shows that in the setting stated in the proposition, with
probability 1− exp(−t), it holds that the least square estimator

∥∥∥β̂ − β∥∥∥2

2
≤ O

σ2
(
d+ 2

√
dt+ 2t

)
n

+ o

(
1

n

)
.

This implies that with probability 1− δ, it holds that∥∥∥β̂ − β∥∥∥2

2
= O

(
σ2(d+ log(1/δ))

n

)
.

To prove the second part of the proposition, we first show that σ̂2 is an unbiased estimator for σ2

and then apply Hanson-Wright inequality to show the concentration. Define vector y := (y1, . . . , yn),

ε := (ε1, . . . , εn) and matrix X :=
[
x1, . . . ,xn

]>
. Notice that

E
[
σ̂2
]

=
1

n− d
E

[
n∑
i=1

(
yi − β̂>xi

)2
]

=
1

n− d
E
[
ε>
(

In −X
(
X>X

)−1
X>
)
ε

]
=

1

n− d
E
[
tr

[
In −X

(
X>X

)−1
X>
]]

= σ2,

where the last equality holds since X
(
X>X

)−1
X> has exactly d eigenvalues equal to 1 almost

surely. For a fixed X with rank d, by Hanson-Wright inequality (Vershynin, 2018, Theorem 6.2.1),
it holds that

P
[∣∣σ̂2 − σ2

∣∣ ≥ z] ≤ 2 exp
{
−cmin

{
(n− d)z2/σ4, (n− d)z/σ2

}}
,

which implies that with probability 1− δ∣∣σ̂2 − σ2
∣∣ = O

(
log(1/δ)√
n− d

σ2

)
.

E Simulations

We set d = 8k, p = 1k/k, s = 1k, and Px and Pε are standard Gaussian distributions.

E.1 Subspace estimation

We compute the subspace estimation error ρ−1 maxi∈[k]

∥∥(UU> − I
)
wi

∥∥
2

for various (tL1, nL1)
pairs for k = 16 and present them in Table 2.
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Table 2: Error in subspace estimation for k = 16, varying nL1 & tL1.

(tL1, nL1) 214 215 216 217 218 219 220

21 0.652 0.593 0.403 0.289 0.195 0.132 0.101

22 0.383 0.308 0.194 0.129 0.101 0.069 0.05

23 0.203 0.153 0.099 0.072 0.052 0.034 0.03

E.2 Clustering

Given a subspace estimation error is∼ 0.1, the clustering step is performed with nH = max
{
k3/2, 256

}
tasks for various tH . The minimum tH such that the clustering accuracy is above 99% for at-least
1 − δ fraction of 10 random trials is denoted by tmin(1 − δ). Figure 3, and Table 3 illustrate the
dependence of k on tmin(0.5), and tmin(0.9).

Figure 3: tmin(0.9) and tmin(0.5) for various k

Table 3: tmin for various k, for 99% clustering w.h.p.

k 16 32 64 128 256

tmin(0.9) 55 81 101 133 184

tmin(0.5) 49 74 94 129 181

E.3 Classification and parameter estimation

Given a subspace estimation error is ∼ 0.1, and a clustering accuracy is > 99%, the classification
step is performed on nL2 = max

{
512, k3/2

}
tasks for variour tL2 ∈ N. The empirical mean of

the classification accuracy is computed for every tL2, and illustrated in Figure 5. Similar to the
simulations in the clustering step, tmin(1− δ) is estimated such that the classification accuracy is
above 99% for at-least 1− δ fraction times of 10 random trials, and is illustrated in Table 4. With
tL2 = tmin(0.9), and various nL2 ∈ N, the estimation errors of Ŵ, ŝ, and p̂ are computed as the
infimum of ε satisfying (12), and is illustrated in Figure 4.
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Table 4: tmin for various k, for 99% classification w.h.p.

k 16 32 64 128

tmin(0.9) 31 34 36 38

tmin(0.5) 28 28 34 36

Figure 4: Estimation errors for k = 32.

E.4 Prediction

As a continuation of the simulations in this section, we proceed to the prediction step for k = 32
and d = 256. We use both the estimators: Bayes estimator, and the MAP estimator and illustrate
the training and prediction errors in Figure 2. We also compare the prediction error with the vanilla
least squares estimator if each task were learnt separately to contrast the gain in meta-learning.

E.5 Comparison for parameter estimation against Expectation Maximization
(EM) algorithm

For fair comparisons, we consider our meta dataset for k = 32, and d = 256 to jointly have
nL1 tasks with tL1 examples, nH tasks with tH examples, and nL2 tasks with tL2 examples as
were used in Section E.3. We observe that the convergence of EM algorithm is very sensitive to
the initialization, thus we investigate the sensitivity with the following experiment. We initialize
W(0) = PB2,d(0,1) (W + Z), where Zi,j ∼ N (0, γ2) ∀ i ∈ [d] , j ∈ [k], s = |q|, where q ∼ N (s, 0.1Ik),

and p(0) = |z| / ‖z‖1 where z ∼ N (p, Ik/k). PX (·) denotes the projection operator that projects
each column of its argument on set X . We observe that EM algorithm fails to converge for γ2 ≥ 0.5
for this setup unlike our algorithm.
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(a) k = 32 (b) k = 64 (c) k = 128

Figure 5: Classification accuracies for various k
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