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Abstract

This work studies the problem of sequential control in an unknown, nonlinear dynamical
system, where we model the underlying system dynamics as an unknown function in a known
Reproducing Kernel Hilbert Space. This framework yields a general setting that permits dis-
crete and continuous control inputs as well as non-smooth, non-differentiable dynamics. Our
main result, the Lower Confidence-based Continuous Control (LC3) algorithm, enjoys a near-
optimalO(

√
T ) regret bound against the optimal controller in episodic settings, where T is the

number of episodes. The bound has no explicit dependence on dimension of the system dy-
namics, which could be infinite, but instead only depends on information theoretic quantities.
We empirically show its application to a number of nonlinear control tasks and demonstrate
the benefit of exploration for learning model dynamics.

1 Introduction
The control of uncertain dynamical systems is one of the central challenges in Reinforcement
Learning (RL) and continuous control, and recent years has seen a number of successes in demand-
ing sequential decision making tasks ranging from robotic hand manipulation [Todorov et al., 2012,
Al Borno et al., 2012, Kumar et al., 2016, Tobin et al., 2017, Lowrey et al., 2018, Akkaya et al.,
2019] to game playing [Silver et al., 2016, Bellemare et al., 2016, Pathak et al., 2017, Burda et al.,
2018]. The predominant approaches here are either based on reinforcement learning or continuous
control (or a mix of techniques from both domains).

With regards to provably correct methods which handle both the learning and approxima-
tion in unknown, complex environments, the body of results in the reinforcement learning liter-
ature [Russo and Van Roy, 2013, Jiang et al., 2017, Sun et al., 2019, Agarwal et al., 2019a] is
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far more mature than in the continuous controls literature. In fact, only relatively recently has
there been provably correct methods (and sharp bounds) for the learning and control of the Linear
Quadratic Regulator (LQR) model [Mania et al., 2019, Simchowitz and Foster, 2020, Abbasi-
Yadkori and Szepesvári, 2011], arguably the most basic model due to having globally linear dy-
namics.

While Markov Decision Processes provide a very general framework after incorporating con-
tinuous states and actions into the model, there are a variety of reasons to directly consider learning
in continuous control settings: even the simple LQR model provides a powerful framework when
used for locally linear planning [Ahn et al., 2007, Todorov and Li, 2005, Tedrake, 2009, Perez
et al., 2012]. More generally, continuous control problems often have continuity properties with
respect to the underlying “disturbance” (often modeled as statistical additive noise), which can be
exploited for fast path planning algorithms [Jacobson and Mayne, 1970, Williams et al., 2017];
analogous continuity properties are often not leveraged in designing provably correct RL models
(though there are a few exceptions, e.g. [Kakade et al., 2003]). While LQRs are a natural model
for continuous control, they are prohibitive for a variety of reasons: LQRs rarely provide good
global models of the system dynamics, and, furthermore, naive random search suffices for sample
efficient learning of LQRs [Mania et al., 2019, Simchowitz and Foster, 2020] — a strategy which is
unlikely to be effective for the learning and control of more complex nonlinear dynamical systems
where one would expect strategic exploration to be required for sample efficient learning (just as
in RL, e.g. see Kearns and Singh [2002], Kakade [2003]).

This is the motivation for this line of work, where we focus directly on the sample efficient
learning and control of an unknown, nonlinear dynamical system, under the assumption that the
mean dynamics live within some known Reproducing Kernel Hilbert Space.

The Online Nonlinear Control Problem. This work studies the following nonlinear control
problem, where the nonlinear system dynamics are described, for h ∈ {0, 1, . . . H − 1}, by

xh+1 = f(xh, uh) + ε, where ε ∼ N (0, σ2I)

where the state xh ∈ RdX ; the control uh ∈ U where U may be an arbitrary set (not necessarily
even a vector space); f : X × U → X is assumed to live within some known Reproducing Kernel
Hilbert Space; the additive noise is assumed to be independent across timesteps.

Specifically, the model considered in this work was recently introduced in Mania et al. [2020],
which we refer to as the kernelized nonlinear regulator (KNR) for the infinite dimensional exten-
sion. The KNR model assumes that f lives in the RKHS of a known kernel K. Equivalently, the
primal version of this assumption is that:

f(x, u) = W ?φ(x, u)

for some known function φ : X × U → H where H is a Hilbert space (either finite or countably
infinite dimensional) and where W ? is a linear mapping. Given an immediate cost function c :
X × U → R+ (where R+ is the non-negative real numbers), the KNR problem can be described
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by the following optimization problem:

min
π∈Π

Jπ(x0; c) where Jπ(x0; c) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0

]
where x0 is a given starting state; Π is some set of feasible controllers; and where a controller (or
a policy) is a mapping π : X × {0, . . . H − 1} → U . We denote the best-in-class cumulative cost
as J?(x0; c) = minπ∈Π J

π(x0; c). Given any model parameterization W , we denote Jπ(x0; c,W )
as the expected total cost of π under the dynamics Wφ(x, u) + ε.

It is worthwhile to note that this KNR model is rather general in the following sense: the space
of control inputs U may be either discrete or continuous; and the dynamics f need not be a smooth
or differentiable function in any of its inputs. A more general version of this problem, which we
leave for future work, would be where the systems dynamics are of the form xh+1 = fh(xh, uh, εh),
in contrast to our setting where the disturbance is due to additive Gaussian noise.

We consider an online version of this KNR problem: the objective is to sequentially optimize a
sequence of cost functions where the nonlinear dynamics f are not known in advance. We assume
that the learner knows the underlying Reproducing Kernel Hilbert Space. In each episode t, we
observe an instantaneous cost function ct; we choose a policy πt; we execute πt and observe a
sampled trajectory x0, u0, . . . , xH−1, uH−1; we incur the cumulative cost under ct. Our goal is to
minimize the sum of our costs over T episodes. In particular, we desire to execute a policy that is
nearly optimal for every episode.

A natural performance metric in this context is our cumulative regret, the increase in cost due
to not knowing the nonlinear dynamics beforehand, defined as:

REGRETT =
T−1∑
t=0

H−1∑
h=0

ct(xth, u
t
h)−

T−1∑
t=0

min
π∈Π

Jπ(x0; ct)

where {xth} is the observed states and {uth} is the observed sequence of controls. A desirable
asymptotic property of an algorithm is to be no-regret, i.e. the time averaged version of the regret
goes to 0 as T tends to infinity.

Our Contributions. The first set of provable results in this setting, for the finite dimensional
case and for the problem of system identification, was provided by Mania et al. [2020]. Our
work focuses on regret, and we provide the Lower Confidence-based Continuous Control (LC3)
algorithm, which enjoys a O(

√
T ) regret bound. We provide an informal version of our main

result, specialized to the case where the dimension of the RKHS is finite and the costs are bounded.

Theorem 1.1 (Informal statement; finite dimensional case with bounded features). Consider the
special case where: ct(x, u) ∈ [0, 1]; dφ is finite (with dX + dφ ≥ H); and φ is uniformly bounded,
with ‖φ(x, u)‖2 ≤ B; The LC3 algorithm enjoys the following expected regret bound:

ELC3 [REGRETT ] ≤ Õ

(√
dφ
(
dX + dφ

)
H3T · log

(
1 +

B2‖W ?‖2
2

σ2

))
,

where Õ(·) notation drops logarithmic factors in T and H .
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There are a number of notable further contributions with regards to our work:

• (Dimension and Horizon Dependencies) Our general regret bound has no explicit depen-
dence on dimension of the system dynamics (the RKHS dimension), which could be infinite,
but instead only depends on information theoretic quantities; our horizon dependence is H3,
which we conjecture is near optimal. It is also worthwhile noting that our regret bound is
only logarithmic in ‖W ?‖2 and σ2.

• (Localized rates) In online learning, it is desirable to obtain improved rates if the loss of the
“best expert” is small, e.g. in our case, if J?(x0; ct) is small. Under a bounded coefficient
of variation condition (which holds for LQRs and may hold more generally), we provide an
improved regret bound whose leading term regret depends linearly on J?.

• (Moment bounds and LQRs) Our regret bound does not require bounded costs, but instead
only depends on second moment bounds of the realized cumulative cost, thus making them
applicable to LQRs, as a special case.

• (Empirical evaluation:) Coupled with the right features (e.g., kernels), our method, arguably
one of the simplest, provides competitive results in common continuous control benchmarks,
exploration tasks, and complex control problems such as dexterous manipulation.

While our techniques utilize methods developed for the analysis of linear bandits [Dani et al.,
2008, Abbasi-Yadkori et al., 2011] and Gaussian process bandits [Srinivas et al., 2009], there are
a number of new technical challenges to be addressed with regards to the multi-step extension to
Reinforcement Learning. In particular, some nuances for the more interested reader: we develop
a stopping time martingale to handle the unbounded nature of the (realized) cumulative costs;
we develop a novel way to handle Gaussian smoothing through the chi-squared distance function
between two distributions; our main technical lemma is a “self-bounding” regret bound that relates
the instantaneous regret on any given episode to the second moment of the stochastic process.

Notation. We let ‖x‖2, ‖M‖2, and ‖M‖F refer to the Euclidean norm, the spectral norm, and
the Frobenius norm, respectively, of a vector x and a matrix M .

2 Related Work
The first set of provable results with regards to this nonlinear control model was provided by Mania
et al. [2020], who studied the problem of system identification in a finite dimensional setting (we
discuss these results later). While not appearing with this name, a Gaussian process version of this
model was originally considered by Deisenroth and Rasmussen [2011], without sample-efficiency
guarantees.

More generally, most model-based RL/controls algorithms do not explicitly address the explo-
ration challenge nor do they have guarantees on the performance of the learned policy [Deisenroth
and Rasmussen, 2011, Levine and Abbeel, 2014, Chua et al., 2018, Kurutach et al., 2018, Naga-
bandi et al., 2018, Luo et al., 2018, Ross and Bagnell, 2012]. Departing from these works, we
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focus on provable sample efficient regret bounds and strategic exploration in model-based learning
in the kernelized nonlinear regulator.

Among provably efficient model-based algorithms, works from Sun et al. [2019], Osband and
Van Roy [2014], Ayoub et al. [2020], Lu and Van Roy [2019] are the most related to our work.
While these works are applicable to certain linear structures, their techniques do not lead to the
results herein: even for the special case of LQRs, they do not address the unbounded nature of the
costs, where there is more specialized analysis [Mania et al., 2019, Cohen et al., 2019, Simchowitz
and Foster, 2020]; these results do not provide techniques for sharp leading order dependencies like
in our regret results (and the former three do not handle the infinite dimensional case); they also
do not provide techniques for localized regret bounds, like those herein which depend on J?. A
few more specific differences: the model complexity measure Witness Rank from Sun et al. [2019]
does contain the kernelized nonlinear regulator if the costs were bounded and the dimensions were
finite; Osband and Van Roy [2014] considers a setting where the model class has small Eluder
dimension, which does not apply to the infinite-dimensional settings that we consider here; Lu and
Van Roy [2019] presents a general information theoretic framework providing results for tabular
and factor MDPs. There are numerous technical challenges addressed in this work which may be
helpful for further analysis of models in continuous control problems.

Another family of related work provides regret analyses of online LQR problems. There are a
host of settings considered: unknown stochastic dynamics [Abbasi-Yadkori and Szepesvári, 2011,
Dean et al., 2018, Mania et al., 2019, Cohen et al., 2019, Simchowitz and Foster, 2020]; adversarial
noise (or adversarial noise with unknown mean dynamics) [Agarwal et al., 2019b, Hazan et al.,
2019]; changing cost functions with known dynamics [Cohen et al., 2018, Agarwal et al., 2019c].
For the case of unknown (stochastic) dynamics, our online KNR problem is more general than
these works, due to a more general underlying model; one distinction is that many of these prior
works on LQRs consider the regret on a single trajectory, under stronger stability and mixing
assumptions of the process. This is an interesting direction for future work (see Section 5).

On the system identification side, Mania et al. [2020] provides the first sample complexity
analysis for finite dimensional KNRs under assumptions of reachability and bounded features. The
work of Mania et al. [2020] is an important departure from the aforementioned model-based theo-
retical results [Sun et al., 2019, Osband and Van Roy, 2014, Ayoub et al., 2020, Lu and Van Roy,
2019]; the potentially explosive nature of the system dynamics makes system ID challenging, and
Mania et al. [2020] directly addresses this through various continuity assumptions on the dynam-
ics. One notable aspect of our work is that it permits both an unbounded state and unbounded
features. The KNR also has been used in practice for system identification [Ng et al., 2006, Abbeel
and Ng, 2005].

3 Main Results

3.1 The Lower Confidence-based Continuous Control algorithm
LC3 is based on “optimism in the face of uncertainty,” which is described in Algorithm 1. At
episode t, we use all previous experience to define an uncertainty region (an ellipse). The center
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Algorithm 1 Lower Confidence-based Continuous Control (LC3)
Require: Policy class Π; regularizer λ; confidence parameter C1 (see Equation 3.3).

1: Initialize BALL0 to be any set containing W ?.
2: for t = 0 . . . T do
3: πt = arg minπ∈Π minW∈BALLt J

π(x0; ct,W )
4: Execute πt to sample a trajectory τ t := {xth, uth, cth, xth+1}H−1

h=0

5: Update BALLt+1 (as specified in Equation 3.2).
6: end for

of this region, W
t
, is the solution of the following regularized least squares problem:

W
t

= arg min
W

t−1∑
τ=0

H−1∑
h=0

‖Wφ(xτh, u
τ
h)− xτh+1‖2

2 + λ‖W‖2
F , (3.1)

where λ is a parameter, and the shape of the region is defined through the feature covariance:

Σt = λI +
t−1∑
τ=0

H−1∑
h=0

φ(xτh, u
τ
h)(φ(xτh, u

τ
h))
>, with Σ0 = λI.

The uncertainty region, or confidence ball, is defined as:

BALLt =

{
W
∣∣∣ ∥∥∥(W −W t

) (
Σt
)1/2
∥∥∥2

2
≤ βt

}
, (3.2)

where recall that ‖M‖2 denotes the spectral norm of a matrix M and where

βt := C1

(
λσ2 + σ2

(
dX + log

(
t det(Σt)/ det(Σ0)

) ))
, (3.3)

with C1 being a parameter of the algorithm.
At episode t, the LC3 algorithm will choose an optimistic policy in Line 3 of Algorithm 1.

Solving this optimistic planning problem in general is NP-hard [Dani et al., 2008]. Given this
computational hardness, we focus on the statistical complexity and explicitly assume access to the
following computational oracle:

Assumption 1 (Black-box computation oracle). We assume access to an oracle that implements
Line 3 of Algorithm 1.

We leave to future work the question of finding reasonable approximation algorithms, though
we observe that a number of effective heuristics may be available through gradient based meth-
ods such as DDP [Jacobson and Mayne, 1970], iLQG [Todorov and Li, 2005] and CIO [Mor-
datch et al., 2012], or sampling based methods, such as MPPI [Williams et al., 2017] and DMD-
MPC [Wagener et al., 2019]. In particular, these planning algorithms are natural to use in con-
junction with Thompson Sampling [Thompson, 1933, Osband and Van Roy, 2014], i.e. we sam-
ple W t from N (W

t
, (Σt)−1) and then compute and execute the corresponding optimal policy
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πt = arg minπ∈Π J
π(x0; ct,W t) using a planning oracle. While we focus on the frequentist re-

gret bounds, we conjecture that a Bayesian regret bound for the Thompson sampling algorithm,
should be achievable using the techniques we develop herein, along with now standard techniques
for analyzing the Bayesian regret of Thompson sampling (e.g. see Russo and Van Roy [2014]).

3.2 Information Theoretic Regret Bounds
In this section, we analyze the regret of Algorithm 1. Following Srinivas et al. [2009], let us define
the (expected) Maximum Information Gain as:

γT (λ) := max
A

EA
[
log
(

det
(
ΣT
)
/det

(
Σ0)
) )]

= max
A

EA

[
log det

(
I +

1

λ

T−1∑
t=0

H−1∑
h=0

φ(xth, u
τ
h)(φ(xth, u

τ
h))
>

)]
,

where the max is over algorithms A, where an algorithm is a mapping from the history before
episode t to the next policy πt ∈ Π.

Remark 3.1. (Finite dimensional RKHS) For φ ∈ Rdφ , with ‖φ(x, u)‖ ≤ B ∈ R+ for all (x, u),
then γT (λ) will be O(dφ log(1+THB2/λ) (see Lemma C.5). Furthermore, it may be the case that
γT (λ) � dφ if the eigenspectrum of the covariance matrices of the policies tend to concentrate in
a lower dimensional subspace. See Srinivas et al. [2009] for details and for how γT (λ) scales for a
number of popular kernels.

The General Case, with Bounded Moments

Assumption 2. (Bounded second moments at x0) Assume that ct is a non-negative function for
all t and that the realized cumulative cost, when starting from x0, has uniformly bounded second
moments, over all policies and cost functions ct. Precisely, suppose for every ct,

sup
π∈Π

E

(H−1∑
h=0

ct(xh, uh)

)2 ∣∣∣∣ x0, π

 ≤ Vmax.

This assumption is substantially weaker than the standard bounded cost assumption used in
prior model-based works [Sun et al., 2019, Lu and Van Roy, 2019]; furthermore, the assumption
only depends on the starting x0 as opposed to a uniform bound over the state space.

Theorem 3.2 (LC3 regret bound). Suppose Assumptions 1 and 2 hold. Set λ = σ2

‖W ?‖22
and define

d̃ 2
T := γT (λ) ·

(
γT (λ) + dX + log(T ) +H

)
.

There exist constants C1, C2 ≤ 20 such that if LC3 (Alg. 1) is run with input parameters λ and C1

(in Equation 3.3), then following regret bound holds for all T ,

ELC3 [REGRETT ] ≤ C2 d̃T
√
VmaxHT.
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While the above regret bound is applicable to the infinite dimensional RKHS setting and does
not require uniformly bounded features φ, it is informative to specialize the regret bound to the
finite dimensional case with bounded features.

Corollary 3.3 (LC3 Regret for finite dimensional, bounded features). Suppose that Assumptions 1
and 2 hold; dφ is finite; and that φ is uniformly bounded, with ‖φ(x, u)‖2 ≤ B. Under the same
parameter choices as in Theorem 3.2, we have, for all T ,

ELC3 [REGRETT ] ≤ C2

√
dφ

(
dφ + dX + log(T ) +H

)
VmaxHT · log

(
1 +

B2‖W ?‖2
2

σ2

TH

d

)
.

The above immediately follows from a bound on the finite dimensional information gain (see
Lemma C.5).

A few remarks are in order:

Remark 3.4 (Logarithmic parameter dependencies). It is worthwhile noting that our regret bound
has only logarithmic dependencies ‖W ?‖2 and σ2. Furthermore, in the case of finite dimensional
and bounded features, the bound is also only logarithmic in the bound B.

Remark 3.5 (Dimension and horizon dependencies). For the special case with bounded ct(x, u) ∈
[0, 1], bounded φ ∈ Rdφ , and dφ+dX ≥ H , LC3 has a regret bound of Õ(

√
dφ(dφ + dX )H3T ). Our

dimension dependence matches the lower bounds in [Dani et al., 2008] for linear bandits (where
H = 1 and dX = 1). Furthermore, for fixed dimension, one might expect an Ω(

√
H2T ) lower

bound based on results for tabular MDPs (see Azar et al. [2017], Dann and Brunskill [2015]).
Obtaining sharp lower bounds is an important direction for future work.

Remark 3.6 (Linear Quadratic Regulators (LQR) as a special case). Our model generalizes the
Linear Quadratic Regulator (LQR). Specifically, we can set φ(x, u) = [x>, u>]>, c(x, u) =
x>Qx + u>Ru with Q and R being some PSD matrix. We can consider a policy class to be a
(subset) of all linear controls, i.e., Π = {π : u = Kx,K ∈ K ⊂ Rdu×dX }.

Consider the case where dX = du = d (with d > H) and the policy class consists of con-
trollable policies (e.g. see Cohen et al. [2019]). Here, our regret scales as Õ

(√
H3d4T

)
( since

Vmax = O(Hd2), e.g. see Simchowitz and Foster [2020]). While our rate is a factor of
√
d larger

than the minimax regret bound for an LQR [Simchowitz and Foster, 2020], which is Ω(
√
d3T ),

our results also apply to non-linear settings, as opposed to the globally linear LQR setting.

The Stabilizing Case, with Bounded Coefficient of Variation

In many cases of practical interest, the optimal cost J?(x0; c) may be substantially less than the cost
of other controllers, i.e. J?(x0; c) � maxπ∈Π J

π(x0; c) <
√
Vmax. In such cases, one might hope

for an improved regret bound for sufficiently large T . We show that this is the case provided our
policy class satisfies a certain bounded coefficient of variation condition, which holds for LQRs.
Recall the coefficient of variation of a random variable is defined as the ratio of the standard
deviation to mean.
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Assumption 3 (Bounded coefficient of variation at x0). Assume that the realized cumulative cost,
when starting from x0, has a uniformly bounded coefficient of variation. Specifically, assume there
exists an α ∈ R+, such that for every ct and all π ∈ Π,

E

(H−1∑
h=0

ct(xh, uh)

)2 ∣∣∣∣ x0, π

 ≤ (α Jπ(x0; ct)
)2

.

Remark 3.7 (α for LQRs). It is straightforward to verify that Assumption 3 is satisfied in LQRs
(with linear controllers) with α2 = 3.

Under this assumption, we can get a regret bound with a leading order term dependent on J?.
The lower order term will depend on a higher moment version of the information gain, defined as
follows:

γ2,T (λ) := max
A

EA
[(

log
(

det
(
ΣT−1

)
/det

(
Σ0
) ))2

]
.

Again, for a finite dimensional RKHS with features whose norm bounded is by B, then γ2,T will
also be O((dφ log(1 + THB2/λ))2) (see Remark 3.1 and Lemma C.5).

Theorem 3.8 (J? regret bound). Suppose that Assumptions 1, 2, and 3 hold and that for all t,
J?(x0; ct) ≤ J?. Again, set λ = σ2

‖W ?‖22
and define d̃T as in Theorem 3.2. There exist absolute

constants C1, C2 such that if LC3 (Alg. 1) is run with input parameters C1 and λ, then the following
regret bound holds for all T ,

ELC3 [REGRETT ] ≤ C2

(
αJ?d̃T

√
HT + αH

√
Vmax

(
d̃ 2
T + γ2,T (λ)

))
.

See the Discussion (Section 5) for comments on improving the J? dependence to
√
J?.

3.3 Proof Techniques
A key technical, “self-bounding” lemma in our proof bounds the difference in cost under two
different models, i.e. Jπ(x; c,W ?)−Jπ(x; c,W ), in terms of the second moment of the cumulative
cost itself, i.e. in terms of V π(x; c,W ?), where

V π(x; c,W ?) := E

(H−1∑
h=0

c(xh, uh)

)2 ∣∣∣∣ x0 = x, π,W ?

 .
Lemma 3.9 (Self-Bounding, Simulation Lemma). For any state x, non-negative cost function c,
and model W , we have:

Jπ(x; c,W ?)− Jπ(x; c,W ) ≤
√
HV π(x; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
‖(W ? −W )φ(xh, uh)‖2

2

σ2
, 1

}]
where the expectation is with respect to π in W ? starting at x0 = x.
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InvertedPendulum Acrobot CartPole Mountain Car Reacher Hopper

LC3 −0.0± 0.0 95.4± 52.5 199.7± 0.4 27.3± 8.1 −4.1± 1.6 −1016.5± 607.4
(Ranking) 1/11 1/11 2/11 2/11 1/11 7/11

GT-MPPI −0.0± 0.0 177.8± 25.0 199.8± 0.1 24.9± 2.9 −2.4± 0.1 2995.7± 215.3
PETS-CEM −20.5± 28.9 12.5± 29.0 199.5± 3.0 −57.9± 3.6 −12.3± 5.2 1125.0± 679.6
PILCO −194.5± 0.8 −394.4± 1.4 −1.9± 155.9 −59.0± 4.6 −13.2± 5.9 −1729.9± 1611.1

Table 1: Final performances for six Gym environments. Algorithm are run under the same condi-
tions of Wang et al. [2019]. The performances of PETS-CEM and PILCO are copied for reference,
and the performance of ground-truth MPPI (GT-MPPI) that has access to true model are also
shown. The results are averaged over four random seeds and a window size of 5,000 timesteps.

The proof, provided in Appendix B, involves the construction of a certain stopping time martin-
gale to handle the unbounded nature of the (realized) cumulative costs, along with a novel way to
handle Gaussian smoothing through the chi-squared distance function between two distributions.
This lemma helps us in constructing a potential function for the analysis of the LC3 algorithm.

4 Experiments
We evaluate LC3 on three domains: a set of continuous control tasks, a maze environment that
requires exploration, and a dexterous manipulation task. Throughout these experiments, we use
model predictive path integral control (MPPI) [Williams et al., 2017] for planning, and posterior
reshaping [Chapelle and Li, 2011] (i.e., scaling of posterior covariance) for Thompson sampling
– we don’t implement LC3 as analyzed, but rather implement a Thompson sampling variation.
The algorithms are implemented in the Lyceum framework under the Julia programming language
[Summers et al., 2020, Bezanson et al., 2017]. Comparison algorithms provided by Wang and Ba
[2019], Wang et al. [2019]. Note that these experiments use reward (negative cost) for evaluations.
Further details of the experiments in this section can be found in Appendix D.

4.1 Benchmark Tasks with Random Features
We use some common benchmark tasks, including MuJoCo [Todorov et al., 2012] environments
from OpenAI Gym [Brockman et al., 2016]. We use Random Fourier Features (RFF) [Rahimi
and Recht, 2008] to represent φ. Fig. 1 plots the learning curves against GT-MPPI and the best
model-based RL (MBRL) algorithm reported in Wang et al. [2019]. It is observed that LC3 with
RFFs quickly increased reward in early stages, indicating low sample complexities empirically.
Table 1 shows the final performances (at 200k timesteps) of LC3 with RFFs for six environments,
and includes its ranking compared to the benchmarks results from Wang et al. [2019]. We find
that LC3 consistently performs well on simple continuous control tasks, and it works well even
without posterior sampling. However, when the dynamical complexity increases, such as with the
contact-rich Hopper model, our method’s performance suffers due to non-adaptation of the RFFs.
This suggests that more interesting scenarios require different feature representation.
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Figure 1: Performance curves of LC3 with RFFs for different Gym environments. Note the reward
(negative cost) ranges of those plots are made different. The final mean performances of GT-MPPI
and the best model-based RL (MBRL) algorithm reported in Wang et al. [2019] are also shown for
reference. The algorithm is run for 200,000 timesteps and with four random seeds. The curves are
averaged over the four random seeds and a window size of 5,000 timesteps.

4.2 Exploring the Maze
We construct a maze environment to study the exploration capability of LC3 (see Fig. 2 (a)). State
and control take values in [−1, 1]2 ⊂ R2 and in [−1, 1] ⊂ R, respectively. The task is to bring an
agent to the goal state being guided by the negative cost (reward)−c(xh, uh) = 8−‖xh− [1, 1]>‖2

2.
We use a one-hot vector of states and actions as features.

We compare the performances, over 50 episodes with task trajectory length 30, of LC3 (with
different scale parameters for posterior reshaping) to random walk and PETS-CEM. Fig. 2 (b) plots
the means and standard deviations, across four random seeds, of the number of state-action pairs
visited over episodes. We observe that LC3’s strategic exploration better modeled the setting for
higher rate of success.

4.3 Practical Application
As we might consider learning model dynamics for the real world in applications such as robotics,
we need sufficiently complex features – without resorting to large scale data collection for feature
learning. One solution to this problem is creating an ensemble of parametric models, such as found

11



Figure 2: Left: An illustration of the maze environment. Start and End states are [−1,−1]> and
[1, 1]>, respectively. Dark lines are “walls”. Right: The means and standard deviations, across four
random seeds, of the number of state-action pairs already explored over episodes. Covariance scale
is the posterior reshaping constant of Thompson sampling. Random walk takes actions uniformly
sampled within [−1, 1]. PETS-CEM is a representative model-based RL which uses uncertainty of
dynamics but without exploration. The agent always reaches the goal within 50 episodes under the
best setting of LC3 and the average number of episodes required for the first success is 25.0, while
random walk and PETS-CEM never bring the agent to the goal within 50 episodes.

in Tobin et al. [2017], Mordatch et al. [2015]. We take the perspective that most model parameters
of a robotic system will be known, such as kinematic lengths, actuator specifications, and inertial
configurations. Since we would like robots to operate in the wild, some dynamical properties may
be unknown: in this case, the manipulated object’s dynamical properties. Said another way, the
robot knows about itself, but only a little about the object.

In this experiment, we demonstrate our model learning algorithm on a robotics inspired, dex-
terous manipulation task. An arm and hand system (see Fig. 3) must pick up a spherical object with
unknown dynamical properties, and hold it at a target position. The entire system has 33 degrees
of freedom, and an optimal trajectory would involve numerous discontinuous contacts; the system
dynamics are not well captured by random features and such features are not easily learned. We
instead use the predictive output of an ensemble of six MuJoCo models as our features φ, each with
randomized parameters for the object. Using a single model from the ensemble with the planner is
unable to perform the task.

Fig. 3 plots the learning curves of LC3 with different features. We observe that, within 10
attempts at the task, LC3 with ensemble features is successful, while the same method with RFF
features makes no progress. Additionally, we use LC3 with the top layers of a neural network –
trained on a data set of 30 optimized trajectories with the correct model – as our features. It also
makes little progress.

We clarify the setting in which this approach may be relevant as follows. Complex dynamics,
such as that in the real world, are difficult to represent with function approximation like neural
networks or random features. Rather than collect inordinate amounts of data to mimic the com-
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Figure 3: Left: An illustration of Armhand environment. Right: Performance curves averaged
across 12 random seeds. For reference, we include the average reward of MPPI using a random
model from the ensemble. Its score represents the system moving the hand to the object, but unable
to grasp and lift it: exactly what we would expect for randomized object dynamics parameters.

bination of features and model, we instead use structured representations of the real world, such
as dynamics simulators, to produce features, and use the method in this work to learn the model.
Since dynamics simulators represent the current distillation of physics into a computational form
and accurate measurement of engineered systems is paramount for the modern world, this instan-
tiation of this method is reasonable.

5 Discussion
This work provides O(

√
T ) regret bounds for the online nonlinear control problem, where we

utilize a number of analysis concepts from reinforcement learning and machine learning for con-
tinuous problems. Though our work focuses on the theoretical foundations of learning in nonlinear
control, we believe our work has broader impact in the following aspects.

Our work helps to further connect two communities: Reinforcement Learning Theory and
Control Theory. Existing models considered in RL literature that have provable guarantees rarely
are applicable to continuous control problems while only few existing control theory results focus
on the (non-asymptotic) sample complexity aspect of controlling unknown dynamical systems.
Our work demonstrates that a natural nonlinear control model, the KNR model, is learnable from
a learning theoretical perspective.

From a practical application perspective, the sample efficiency of our algorithm enables con-
trol in complex dynamical settings without onerous large scale data collection, hence demonstrates
potentials for model learning and control in real world applications such as dexterous manipula-
tion, medical robotics, human robot interaction, and self-driving cars where complicated nonlinear
dynamics are involved and data is often extremely expensive to collect.

Lastly, there are a number of important extensions and future directions.
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Lower bounds: Sharp lower bounds would be important to develop for this very natural model.
As discussed in Remark 3.5, our results are already minimax optimal for some parameter scalings.

Improved upper bounds & J? vs
√
J? dependencies: We conjecture with stronger assumptions

on higher order moments that an optimal O(
√
H2T ) regret is achievable. It is also plausible that

with further higher moment assumptions then, for the stabilizing case, the dependence on J? can
be improved to

√
J?. Here, our conjecture is that one would, instead, need to make a boundedness

assumption on the “index of dispersion,” i.e., that the ratio of the variance to the mean is bounded;
we currently assume the ratio of the standard deviation to the mean is bounded.

The single trajectory case: It would be interesting to use these techniques to develop regret
bounds for the single trajectory case, under stronger stability and mixing assumptions of the pro-
cess (see Cohen et al. [2019] for the LQR case).

Feature learning: As of now, we have assumed the RKHS is known. A practically relevant
direction would be to learn a good feature space.

Acknowledgments
The authors wish to thank Horia Mania for graciously sharing his thoughts in this line of work.
Motoya Ohnishi thanks Aravind Rajeswaran, Vikash Kumar, and Ben Evans at Movement Control
Laboratory for valuable discussions on model-based RL. Also, he thanks Colin Summers for in-
structions on Lyceum. Kendall Lowrey and Motoya Ohnishi thank Emanuel Todorov for valuable
discussions and Roboti LLC for computational supports. Sham Kakade acknowledges funding
from the Washington Research Foundation for Innovation in Data-intensive Discovery, the ONR
award N00014-18-1-2247, NSF Award CCF-1703574, and the NSF Award CCF-1637360. Mo-
toya Ohnishi was supported in part by Wissner-Slivka Endowed Fellowship and Funai Overseas
Scholarship.

References
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A Additional Notation
A controller is a mapping π : X × {0, . . . H − 1} → U . Given a instantaneous cost function
c : X × U → R, we define the cost (or the “cost-to-go” ) of a policy as:

Jπ(x; c,W ) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0 = x,W

]

where the expectation is under trajectories sampled under π starting from x0 in model parameter-
ized by W . The “cost-to-go” at state x at time h ∈ {0, . . . H − 1} is denoted by:

Jπh (x; c,W ) = E

[
H−1∑
`=h

c(x`, u`)
∣∣∣π, xh = x

]
.

When clear from context, we let the episode t index the policy, e.g. we write J t(x; c) to refer
to Jπt(x, c). Subscripts refer to the timestep within an episode and superscripts index the episode
itself, i.e. φth will refer to the random vector which is the observed features during timestep h
within episode t. We letHt denote the history up to the beginning of episode t.

Also, ‖x‖2
M := x>Mx for a vector x and a matrix M .

B Lower Confidence Bound based Analysis
In this section, we provide proofs for the two main theorems: Theorem 3.2 and Theorem 3.8.

B.1 Simulation Analysis
We derive a novel self-bounding simulation lemma (Lemma B.3) in this section, using the Optional
Stopping Theorem.

Lemma B.1 (Difference Lemma). Fix a policy π, cost function c, and model W . Consider any
trajectory {xh, uh}H−1

h=0 where uh = π(xh) for all h ∈ {0, . . . H − 1}. For h ∈ {0, . . . H − 1}, let
Ĵh refer to the realized cost-to-go on this trajectory, i.e.

Ĵh =
H−1∑
τ=h

c(xτ , uτ ).

For all τ ∈ {1, . . . H − 1}, we have that:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵτ − Ex′τ∼P (·|W,xτ−1,uτ−1)J
π
τ (x′τ ; c,W )

+
τ−1∑
h=1

Jπh (xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)J
π
h (x′h; c,W )
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Proof. Starting from h = 0, using u0 = π(x0), we have:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵ1 − Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W )

= Ĵ1 − Jπ1 (x1; c,W ) + Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
` (x′1; c,W )

= Ĵ2 − Ex′2∼P (·|x1,u1,W )J
π
2 (x′2; c,W )

+ Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W ).

Recursion completes the proof, where, at each step of the recursion, we add and subtract Jπt (xt; c,W )

and apply the same operation on the term Ĵt − Jπt (xt; c,W );

Lemma B.2 (“Optional Stopping” Simulation Lemma). Fix a policy π, cost function c, and model
W . Consider the stochastic process over trajectories, where {xh, uh}Hh=0 ∼ π is sampled with
respect to the model W ?. With respect to this stochastic process, define a stopping time τ as:

τ = min {h ≥ 0 : Jπh (xh; c,W ) ≥ Jπh (xh; c,W
?)} .

Define the random variable J̃πh (xh) as:

J̃πh (xh) = min {Jπh (xh; c,W ), Jπh (xh; c,W
?)} .

We have that:

Jπ0 (x0; c,W ?)− Jπ0 (x0; c,W )

≤ E

[
H−1∑
h=0

1{h < τ}
(
Ex′h+1∼P (·|W ?,xh,uh)J̃

π
h+1(x′h+1)− Ex′h+1∼P (·|W,xh,uh)J̃

π
h+1(x′h+1)

)]

where the expectation is with respect to {xh, uh}Hh=0 ∼ π sampled with respect to the model W ?.

Proof. Our filtration, Fh, at time h will be the previous noise variables, i.e.

Fh := {ε0, ε1 . . . εh−1},

and note that {x1, u1, c(x1, u1), . . . xh, uh, c(xh, uh)} is fully determined by Fh. Also, observe that
τ is a valid stopping time with respect to the filtration Fh.

Define:
Mh = E

[
Ĵ0 − J?(x0; c,W ) | Fh

]
which is a Doob martingale (with respect to our filtration), and so E[Mh+1|Fh] = Mh. By Doob’s
optional stopping theorem,

E
[
Ĵ0 − J?(x0; c,W )

]
= E[Mτ ] = E

[
E
[
Ĵ0 − J?(x0; c,W ) | Fτ

]]
. (B.1)

The proof consists in bounding Mτ .
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Consider an Fτ , which is stopped at the random time τ . By Lemma B.1,

Mτ = E
[
Ĵ0 − J?(x0; c,W ) | Fτ

]
= Jτ (xτ ; c,W

?)− Ex′τ∼P (·|W,xτ−1,uτ−1)Jh(x
′
τ ; c,W )

+
τ−1∑
h=1

(
Jh(xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)Jh(x

′
h; c,W )

)
=

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)Jh(x

′
h; c,W )

)
≤

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
=

H∑
h=1

1(h ≤ τ)
(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
.

where the third equality follows using the definition of τ which implies that Jτ (xτ ; c,W
?) =

J̃τ (xτ ) and that Jh(xh; c,W ) = J̃h (xh) for h < τ ; and the inequality is due to the definition of J̃ .
Using this bound on Mτ and Equation B.1, we have:

E
[
Ĵ0 − J?(x0; c,W )

]
≤

H∑
h=1

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)]
.

For the h-th term, observe:

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

) ]
= E

[
E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
E
[
1(h− 1 < τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
1(h− 1 < τ)E

[
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h) | Fh−1

] ]
= E

[
1(h− 1 < τ)

(
Ex′h∼P (·|W ?,xh−1,uh−1)J̃h(x

′
h)− Ex′h∼P (·|W,xh−1,uh−1)J̃h(x

′
h)
) ]
.

where the second equality uses that 1(h ≤ τ) = 1(h − 1 < τ), and the third equality uses that
1(h− 1 < τ) is measurable with respect to Fh−1 = {ε0, . . . εh−2}. This completes the proof.

The previous lemma allows us to bound the difference in cost under two different models, i.e.
Jπ(x; c,W ?) − Jπ(x; c,W ), in terms of the second moment of the cumulative cost itself, i.e. in
terms of V π(x; c,W ?), where

V π(x0; c,W ?) := E

(H−1∑
h=0

c(xh, uh)

)2

| x0, π,W
?

 .
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Lemma B.3 (Self-Bounding, Simulation Lemma). For any policy π, model parameterization W ,
and non-negative cost c, and for any state x0, we have:

Jπ(x0; c,W ?)− Jπ(x0; c,W )

≤
√
HV π(x0; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖2

2 , 1

}]
.

where the expectation is with respect to π in W ? starting at x0.

Proof. For the proof, it is helpful to define the random variables:

∆h = Ex′h+1∼P (·|W ?,xh,uh)

[
J̃h+1(x′h+1)

]
− Ex′h+1∼P (·|W,xh,uh)

[
J̃h+1(x′h+1)

]
Ah := Ex′h+1∼P (·|W ?,xh,uh)

[
J̃h+1(x′h+1)2

]
By Lemma C.2 (which bounds the difference in means under two Gaussian distributions, using

the chi-squared distance function), we have:

∆h ≤
√
Exh+1∼P (·|W ?,xh,uh)

[
J̃h+1(xh+1)2

]
min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}
=
√
Ah min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}
.

From Lemma B.2, we have:

Jπ0 (x0; c,W ?)− Jπ0 (x0; c,W ) ≤
H−1∑
h=0

E [1(h < τ)∆h]

≤
H−1∑
h=0

E
[√

Ah min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}]

≤
H−1∑
h=0

√
E [Ah]

√
E
[
min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖2

2 , 1

}]

≤

√√√√E

[
H−1∑
h=0

Ah

]√√√√E

[
H−1∑
h=0

min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖2

2 , 1

}]
,

where in the second inequality we use E[ab] ≤
√
E[a2]E[b2] and the Cauchy-Schwartz inequality
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in the last inequality. For the first term, observe that:

E [Ah] = E
[
Ex′h+1∼P (·|W ?,xh,uh)

[
J̃h+1(x′h+1)2

]]
= E

[
J̃h+1(xh+1)2

]
≤ E

[
Jh+1(xh+1)2

]
= E

(E[ H−1∑
`=h+1

c(x`, u`) | xh+1

])2
 ≤ E

( H−1∑
`=h+1

c(x`, u`)

)2


≤ E

(H−1∑
`=0

c(x`, u`)

)2
 = V π

where the first inequality uses the definition of J̃ ; the second inequality follows from Jensen’s
inequality; and the last inequality follows from our assumption that the instantaneous costs are
non-negative. The proof is completed by substitution.

B.2 Regret Analysis (and proofs of Theorem 3.2 and Theorem 3.8)
Throughout, let Et,cb be the event that W ? ∈ BALLt holds at episode t.

Lemma B.4 (Per-episode Regret Lemma). Suppose Assumptions 1 and 2 hold. Let H<t be the
history of events before episode t. For the LC3, we have:

1(Et,cb)
(
J t(x0; ct)− J?(x0; ct)

)
≤

√
HV t(x0; c,W ?)

(
4βt

σ2
+H

)√√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

]
.

Note that the expectation is with respect to the trajectory of LC3, i.e. it is under πt in W ?.

Proof. Suppose E tcb holds, else the lemma is immediate. By construction of the LC3 algorithm (the
optimistic property) and by the self-bounding, simulation lemma (Lemma B.3), we have:

J t(x0; ct,W ?)− J?(x0; ct,W ?) ≤ J t(x0; ct,W ?)− J t(x0; ct, Ŵ t)

≤
√
HV t(x0; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
1

σ2

∥∥∥(W ? − Ŵ t
)
φth

∥∥∥2

2
, 1

} ∣∣∣H<t

]
.

where the expectation is with respect to the trajectory of LC3, i.e. of πt in W ?.
For W ? ∈ BALLt, we have∥∥∥(Ŵ t −W ?

)
φth

∥∥∥
2
≤
∥∥∥(Ŵ t −W ?

)
(Σt)1/2

∥∥∥
2

∥∥(Σt)−1/2φth
∥∥

2

≤
(∥∥∥(Ŵ t −W t

)
(Σt)1/2

∥∥∥
2

+
∥∥∥(W t −W ?

)
(Σt)1/2

∥∥∥
2

)∥∥φth∥∥(Σt)−1 ≤ 2
√
βt‖φth‖(Σt)−1 .
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where we have also used that Ŵ t,W
t ∈ BALLt, by construction.

This implies that:

H−1∑
h=0

min

{
1

σ2
‖(W ? − Ŵ t)φth‖2

2, 1

}
≤

H−1∑
h=0

min

{
4βt

σ2
‖φth‖2

(Σt)−1 , 1

}

≤ min

{
4βt

σ2

H−1∑
h=0

‖φth‖2
(Σt)−1 , H

}
≤ max

{
4βt

σ2
, H

}
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}
.

The proof is completed by substitution.

Before we complete the proofs, the following two lemmas are helpful. Their proofs are pro-
vided in Appendix B.3. The first lemma bounds the sum failure probability of W ? not being in
all the confidence balls (over all the episodes); the lemma generalizes the argument from [Abbasi-
Yadkori et al., 2011, Dani et al., 2008] to matrix regression.

Lemma B.5 (Confidence Ball). Let

βt = 2λ‖W ?‖2
2 + 8σ2

(
dX log(5) + 2 log(t) + log(4) + log

(
det(Σt)/ det(Σ0)

))
.

We have:
∞∑
t=0

Pr
(
E t,cb

)
=
∞∑
t=0

Pr

(∥∥∥(W t −W ?
) (

Σt
)1/2
∥∥∥2

2
> βt

)
≤ 1

2
.

The next lemma provides a bound on the potential function used in our analysis. It is based on
the elliptical potential function argument from [Dani et al., 2008, Srinivas et al., 2009].

Lemma B.6 (Sum of Potential Functions). For any sequence of φth, we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}
≤ 2 log

(
det(ΣT ) det(Σ0)−1

)
.

Also, recall that LC3 uses the setting of λ = σ2/‖W ?‖2
2. We will also use that, for βT as

defined in Lemma B.5,

βT = 2σ2 + 8σ2
(
dX log(5) + 2 log(T ) + log(4) + log

(
det(ΣT ) det(Σ0)−1

))
≤ 16σ2

(
dX + log(T ) + log

(
det(ΣT ) det(Σ0)−1

))
. (B.2)

In particular, we can take C1 = 16 in LC3. Also,

E[βT ] ≤ 16σ2 (dX + log(T ) + γT (λ)) . (B.3)

using the definition of the information gain.
We now conclude the proof our first main theorem (Theorem 3.2).
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Proof of Theorem 3.2. Using the per-episode regret bound (Lemma B.4), our confidence ball, fail-
ure probability bound (Lemma B.5), and that V t ≤ Vmax,

E [REGRETLC3 ] = E

[
T−1∑
t=0

(
J t(x0; ct)− J?(x0; ct)

)]

≤ E

[
T−1∑
t=0

E
[
1(Et,cb)

(
J t(x0; ct)− J?(x0; ct)

)
| Ht

]]
+
√
Vmax

T−1∑
t=0

E
[
1(E t,cb)

]
≤

√
HVmax

T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

] +
√
Vmax/2

≤
√
HVmax

T−1∑
t=0

√
E
[

4βt

σ2
+H

] √√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√√√√T−1∑
t=0

E
[

4βt

σ2
+H

] √√√√E

[
T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√
T

(
4E[βT ]

σ2
+H

)√
γT (λ) +

√
Vmax/2

≤
√
HVmax

√
64T

(
dX + log(T ) + γT (λ) +H

) √
γT (λ) +

√
Vmax/2

where the third inequality use that E[ab] ≤
√

E[a2]E[b2]; the fourth uses the Cauchy-Schwartz
inequality; the penultimate step uses that βt is non-decreasing, along with the Lemma B.6 and the
definition of the information gain; and the final step uses the bound on βT in Equation B.3. This
completes the proof.

The proof of our second main theorem (Theorem 3.8) now follows.

Proof of Theorem 3.8. By assumption 3 on V t and the per-episode regret lemma (Lemma B.4),

1(Et,cb)V t ≤ α21(Et,cb)J t(x0; ct,W ?)2

≤ 2α2J?(x0; ct,W ?)2 + 21(Et,cb)α2
(
J t(x0; ct,W ?)− J?(x0; ct,W ?)

)2

≤ 2α2J?(x0; ct,W ?)2 + 2α2HVmax

(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

]

26



Using this, and with Lemma B.4 and Lemma B.5, we have

E [REGRETLC3 ]

≤ E

[
T−1∑
t=0

E
[
1(Et,cb)

(
J t(x0; ct)− J?(x0; ct)

)
| Ht

]]
+
√
Vmax

T−1∑
t=0

E
[
1(E t,cb)

]
≤

T−1∑
t=0

E

√H1(Et,cb)V t

(
4βt

σ2
+H

)√√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

] +
√
Vmax/2

≤ αJ∗
√

2H
T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

] 
+ α

√
2H2Vmax

T−1∑
t=0

E

[(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

]]
+
√
Vmax/2.

where have used that
√
a+ b ≤

√
a+
√
b for positive a and b in the last inequality.

An identical argument to that in the proof of Theorem 3.2 leads to the first term above being
bounded as:

αJ∗
√

2H
T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

] 
≤ αJ?

√
128γT (λ) (dX + log(T ) + γT (λ) +H)HT

For the second term,

E

[
T−1∑
t=0

(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

} ∣∣∣H<t

]]

= E

[
T−1∑
t=0

(
4βt

σ2
+H

)
min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}]

≤ E

[(
4βT

σ2
+H

) T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}]

≤ 2E
[(

4βT

σ2
+H

)
log
(
det(ΣT ) det(Σ0)−1

)]
≤ 128E

[(
dX + log(T ) + log

(
det(ΣT ) det(Σ0)−1

)
+H

)
log
(
det(ΣT ) det(Σ0)−1

)]
≤ 128 (H + dX + log(T )) γT (λ) + 128γ2,T (λ)

where we have used that βt is measurable with respect to H<t in the first equality; that βt is
non-decreasing in the first inequality; Lemma B.6 in the second inequality; our bound on βT in
Equation B.2 in the third inequality; and the definition of γT (λ) and γ2,T (λ) in the final step.

The proof is completed via substitution.
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B.3 Confidence Bound and Potential Function Analysis

Proof of Lemma B.5. The center of the confidence ball, W
t
, is the minimizer of the ridge regres-

sion objective in Equation 3.1; its closed-form expression is:

W
t

:=
t−1∑
τ=0

H−1∑
h=0

xτh+1(φτh)
>(Σt)−1,

where Σt = λI +
∑t−1

τ=0

∑H−1
h=0 φ

τ
h(φ

τ
h)
>. Using that xτh+1 = W ?φτh + ετh with ετh ∼ N (0, σ2I),

W
t −W ? =

t−1∑
τ=0

H−1∑
h=0

xτh+1(φτh)
>(Σt)−1 −W ?

=
t−1∑
τ=0

H−1∑
h=0

(W ?φτh + ετh)(φ
τ
h)
>(Σt)−1 −W ?

= W ?

(
t−1∑
τ=0

H−1∑
h=0

φτh(φ
τ
h)
>

)
(Σt)−1 −W ? +

t−1∑
τ=0

H−1∑
h=0

ετh(φ
τ
h)
>(Σt)−1

= −λW ?
(
Σt
)−1

+
t−1∑
τ=0

H−1∑
h=0

ετh(φ
τ
h)
>(Σt)−1.

For any 0 < δt < 1, using Lemma C.4, it holds with probability at least 1− δt,∥∥∥(W t −W ?
) (

Σt
)1/2
∥∥∥

2
≤
∥∥∥λW ?

(
Σt
)−1/2

∥∥∥
2

+

∥∥∥∥∥
t−1∑
τ=0

H−1∑
h=0

ετh(φ
τ
h)
>(Σt)−1/2

∥∥∥∥∥
2

≤
√
λ‖W ?‖2 + σ

√
8dX log(5) + 8 log (det(Σt) det(Σ0)−1/δt).

where we have also used the triangle inequality. Therefore, Pr(E t,cb) ≤ δt.
We seek to bound

∑∞
t=0 Pr(E t,cb). Due to that at t = 0 we have initialized BALL0 to contain

W ?, we have Pr(E0,cb) = 0. For t ≥ 1, let us assign failure probability δt = (3/π2)/t2 for
the t-th event, which, using the above, gives us an upper bound on the sum failure probability as∑∞

t=1 Pr(E t,cb) <
∑∞

t=1(1/t2)(3/π2) = 1/2. This completes the proof.

Proof of Lemma B.6. Recall that Σt+1 = Σt +
∑H−1

h=0 φ
t
h (φth)

> and Σ0 = λI . First use x ≤
2 log(1 + x) for x ∈ [0, 1], we have:

min

{
H−1∑
h=0

‖φth‖2
(Σt)−1 , 1

}
≤ 2 log

(
1 +

H−1∑
h=0

‖φth‖2
(Σt)−1

)
.

For Σt+1, using its recursive formulation, we have:

log det
(
Σt+1

)
= log det

(
Σt
)

+ log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φ
t
h)
> (Σt

)−1/2

)
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Denote the eigenvalues of (Σt)
−1/2∑H−1

h=0 φ
t
h(φ

t
h)
> (Σt)

−1/2 as σi for i ≥ 1. We have

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φ
t
h)
> (Σt

)−1/2

)
= log

∏
i≥1

(1 + σi) ≥ log

(
1 +

∑
i≥1

σi

)
,

where the last inequality uses that σi ≥ 0 for all i. Using the above and the definition of the trace,

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φ
t
h)
> (Σt

)−1/2

)
≥ log

(
1 + tr

((
Σt
)−1/2

H−1∑
h=0

φth(φ
t
h)
> (Σt

)−1/2

))

= log

(
1 +

H∑
h=0

(φth)
>(Σt)−1φth

)
By telescoping the sum,

2
T−1∑
t=0

log

(
1 +

H∑
h=0

(φth)
>(Σt)−1φth

)
≤ 2

T−1∑
t=1

(
log det

(
Σt+1

)
− log det

(
Σt
))

= log
(
det(ΣT ) det(Σ0)−1

)
,

which completes the proof.

C Technical Lemmas
Lemma C.1 (Chi Squared Distance Between Two Gaussians). For Gaussian distributionsN (µ1, σ

2I)
and N (µ2, σ

2I), the (squared) chi-squared distance between N1 and N2 is:∫
(N1(z)−N2(z))2

N1(z)
dz = exp

(
‖µ1 − µ2‖2

2σ2

)
− 1

Proof. Observe that:∫
(N1(z)−N2(z))2

N1(z)
dz =

∫
N1(z)− 2N2(z) +

N2(z)2

N1(z)
dz = −1 +

∫
N2(z)2

N1(z)
dz.

Note that for N 2
2 (z)/N1(z), we have:

N 2
2 (z)/N1(z) =

1

Z
exp

(
− 1

2σ2

(
2‖z − µ2‖2

2 − ‖z − µ1‖2
2

))
,

where Z is the normalization constant for N (0, σ2I), i.e. Z =
∫

exp
(
− 1

2σ2‖z‖2
2

)
dz.

For 2‖z − µ2‖2
2 − ‖z − µ1‖2

2, we can verify that:

2‖z − µ2‖2
2 − ‖z − µ1‖2

2 = ‖z + (µ1 − 2µ2)‖2
2 − 2‖µ1 − µ2‖2

2.
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This implies that:∫
N2(z)2

N1(z)
dz =

1

Z

∫
exp

(
− 1

2σ2

(
‖z − (2µ2 − µ1)‖2

2 − 2‖µ1 − µ2‖
))

dz

=
1

Z
exp

(
‖µ1 − µ2‖2

2

σ2

)∫
exp

(
− 1

2σ2
‖z − (2µ2 − µ1)‖2

2

)
dz

= exp

(
‖µ1 − µ2‖2

2

σ2

)
,

which concludes the proof.

Lemma C.2 (Expectation Difference Under Two Gaussians). For Gaussian distributionN (µ1, σ
2I)

and N (µ2, σ
2I), and for any (appropriately measurable) positive function g, it holds that:

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ min

{
‖µ1 − µ2‖

σ
, 1

} √
Ez∼N1 [g(z)2].

Proof. Define mi = Ez∼Ni [g(z)] for i ∈ {0, 1}. We have:

m1 −m2 = Ez∼N1 [g(z)(1− N2(z)

N1(z)
)]

≤
√

Ez∼N1 [g(z)2]

√∫
(N1(z)−N2(z))2

N1(z)
dz

=
√

Ez∼N1 [g(z)2]

√
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1

where we have used the previous chi-squared distance bound. Also since m2 is positive,

m1 −m2 ≤ m1 ≤
√
Ez∼N1 [g(z)2],

and so

m1 −m2 ≤
√
Ez∼N1 [g(z)2]

√
min

{
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1, 1

}

Now if the min is not achieved by 1, then ‖µ1−µ2‖
2

2σ2 ≤ 1. And since exp(x) ≤ 1+2x for 0 ≤ x ≤ 1,
we have:

min

{
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1, 1

}
≤ min

{
1 +
‖µ1 − µ2‖2

σ2
− 1, 1

}
= min

{
‖µ1 − µ2‖2

σ2
, 1

}
.

which completes the proof.
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Lemma C.3 (Self-Normalized Bound for Vector-Valued Martingales; [Abbasi-Yadkori et al., 2011]).
Let {εi}∞i=1 be a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is
Fi measurable, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R+. Let {Xi}∞i=1

be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft measurable. Assume
that a linear operator V : H → H is positive definite, i.e., x>V x > 0 for any x ∈ H. For any
t, define the linear operator Vt = V +

∑t
i=1XiX

>
i (here xx> denotes outer-product in H). With

probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑
i=1

Xiεi

∥∥∥∥∥
2

V −1
t

≤ 2σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

We generalize this lemma as follows:

Lemma C.4 (Self-Normalized Bound for Matrix-Valued Martingales). Let {εi}∞i=1 be a d-dimensional
vector-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is Fi measur-
able, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R+.1 Let {Xi}∞i=1 be
a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft measurable. Assume
that a linear operator V : H → H is positive definite. For any t, define the linear operator
Vt = V +

∑t
i=1XiX

>
i Then, with probability at least 1− δ, we have for all t, we have:∥∥∥∥∥

t∑
i=1

εiX
>
i V

−1/2
t

∥∥∥∥∥
2

2

≤ 8σ2d log (5) + 8σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)

Proof. Denote S =
∑t

i=1 εiX
>
i . Let us form an ε-net, in `2 distance, C over the unit ball {w :

‖w‖2 ≤ 1, w ∈ Rd}. Via a standard covering argument (e.g. [Shalev-Shwartz and Ben-David,
2014]), we can choose C such that log (|C|) ≤ d log(1 + 2/ε).

Consider a fixed w ∈ C and w>S =
∑t

i=1w
>εiX

T
i . Note that w>εi is a σ-sub Gaussian due to

‖w‖2 ≤ 1. Hence, Lemma C.3 implies that with probability at least 1− δ, for all t,∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

Now apply a union bound over C, we get that with probability at least 1− δ:

∀w ∈ C :

∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

1We say a vector-valued, random variable z is σ-sub-Gaussian if w · z is σ-sub-Gaussian for every unit vector w.
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For any w with ‖w‖2 ≤ 1, there exists a w′ ∈ C such that ‖w − w′‖2 ≤ ε. Hence, for all w such
that ‖w‖2 ≤ 1,∥∥∥∥∥V −1/2

t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)

+ ε

∥∥∥∥∥
t∑
i=1

εiX
>
i V

−1/2
t

∥∥∥∥∥
2

.

By the definition of the spectral norm, this implies that:∥∥∥∥∥
t∑
i=1

εiX
>
i V

−1/2
t

∥∥∥∥∥
2

≤ 1

1− ε
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
Taking ε = 1/2 concludes the proof.

Lemma C.5. For any sequence x0, . . . xT−1 such that, for t < T , xt ∈ Rd and ‖xt‖2 ≤ B ∈ R+,
we have:

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
≤ d log

(
1 +

TB2

dλ

)
.

Proof. Denote the eigenvalues of
∑T−1

t=0 xtx
>
t as σ1, . . . σd, and note:

d∑
i=1

σi = tr

(
T−1∑
t=0

xtx
>
t

)
≤ TB2.

Using the AM-GM inequality,

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
= log

(
d∏
i=1

(1 + σi/λ)

)

= d log

(
d∏
i=1

(1 + σi/λ)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)
≤ d log

(
1 +

TB2

dλ

)
,

which concludes the proof.

D Simulation Setups and Results
Below, we provide simulation setups, including the details of environments and parameter settings.
Specifically, the hyper-parameters, namely, 1) variance of random control variation for MPPI, 2)
temperature parameter for MPPI, 3) planning horizon, 4) number of planning samples, 5) prior
parameter λ, 6) posterior reshaping constant, 7) number of episodes between model updates, 8)
number of features, 9) RFF bandwidth, are presented.

Note parameters were tuned in the following way: we first tuned MPPI parameters on ground
truth models, then we tuned number of RFFs, their bandwidth, prior parameter, and posterior
reshaping constant.
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Table 2: Hyper-parameters used for InvertedPendulum environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.1 RFF bandwidth 5.5
planning horizon 10 prior parameter 10−4

number of planning samples 256 posterior reshaping constant 0
episodes between model updates 1

Table 3: Hyper-parameters used for Acrobot environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.3 RFF bandwidth 4.5
planning horizon 30 prior parameter 0.01
number of planning samples 256 posterior reshaping constant 10−3

episodes between model updates 1

D.1 Gym Environments
The hyper-parameters used for InvertedPendulum, Acrobot, CartPole, Mountain Car, Reacher, and
Hopper are shown in Table 2, 3, 4, 5, 6, and 7, respectively. We used JULIA NUM THREADS=12
for all the Gym experiments.

We mention that we tested many heuristics to improve performance such as input normal-
ization, different prior parameter for each output dimension, using multiple bandwidth of RFFs,
ensemble of RFF models, warm start of planner, experience replay, etc., however, none of them
consistently improved the performance across tasks. Therefore we present the results with no such
heuristics in this paper. Interestingly, increasing number of RFFs for some contact-rich dynamics
such as Hopper did not reduce the modeling error significantly. Being able to model some of the
critical interactions such as contacts seems to be the key for the success of such a complicated
environment.

Table 4: Hyper-parameters used for CartPole environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.1 RFF bandwidth 1.5
planning horizon 50 prior parameter 5× 10−4

number of planning samples 128 posterior reshaping constant 10−4

episodes between model updates 1
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Table 5: Hyper-parameters used for Mountain Car environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.32 number of features 100
temperature parameter 0.2 RFF bandwidth 1.3
planning horizon 110 prior parameter 0.01
number of planning samples 512 posterior reshaping constant 10−6

episodes between model updates 1

Table 6: Hyper-parameters used for Reacher environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 300
temperature parameter 0.3 RFF bandwidth 4.0
planning horizon 20 prior parameter 0.01
number of planning samples 256 posterior reshaping constant 0

episodes between model updates 4

Table 7: Hyper-parameters used for Hopper environment.
MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.2 RFF bandwidth 12.0
planning horizon 128 prior parameter 0.005
number of planning samples 64 posterior reshaping constant 0.01

episodes between model updates 1
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Table 8: Hyper-parameters used for Maze environment.
Planner Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.32 number of features 100
temperature parameter 0.05 prior parameter 0.01
MPPI planning horizon 50 posterior reshaping constant 10−3 (best)
MPPI planning samples 1024 episodes between model updates 1
PETS-CEM horizon 50
PETS-CEM samples 500
PETS-CEM elite size 50

D.2 Maze
In the Maze environment, states and controls are continuous and the agent plans over continuous
spaces; however, the dynamics is given by 1) xh+1 = xh + [−0.5, 0]> (i.e., moving one step
left) if d2uhe = −1, 2) xh+1 = xh + [0,−0.5]> (i.e., moving one step up) if d2uhe = 0, 3)
xh+1 = xh + [0.5, 0]> (i.e., moving one step right) if d2uhe = 1, and 4) xh+1 = xh + [0, 0.5]> (i.e.,
moving one step down) if d2uhe = 2, except for the case there is a wall in the direction of travel,
which then ends up xh+1 = xh.

The hyper-parameters of Maze experiments are shown in Table 8. Note the number of fea-
tures is 100 because one hot vector (e.g., φ(x, u) = [1, 0, . . . , 0]> if x ≤ −0.75 and u ≤ −0.5)
in this maze environment is 100 dimension. Table 8 also includes the parameters used for PETS-
CEM; we used the recommended values as in the paper and the codebase, except for the plan-
ning horizon. The planning horizon was set to be the same as the MPPI counterpart. We used
JULIA NUM THREADS=12 for all the Maze experiments.

D.3 Armhand with Model Ensemble Features
In table 9, we list the dynamical properties that were randomized to make our ensemble. We
use uniform distributions to present a window of possible, realistic values for the parameters: for
example, we randomize the objects mass between 0.1 and 1.0 kg. The center of mass distributions
is the deviation from the center of the sphere, while the moments of inertia parameter is one value
applied to all elements of a diagonal inertia matrix for the object. The contact parameters are
specific to the MuJoCo dynamics simulator we use Todorov et al. [2012], and are the parameters
of internal contact model of the simulation. The range of values of the parameters allow for objects
in the ensemble to have different softness and rebound effects.

Also, table 10 lists learned model predictive error for different features, indicating that the
ensemble of MuJoCo model successfully captured the true dynamics.
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Figure 4: Here we render a representative heatmap of the learned W model from the 6 ensemble
model features. Visible are 6 diagonal traces acting as a weighted average of the output of each
member of the ensemble, but also significant off-diagonal values. The upper block values represent
generalized positions, while the lower block is generalized velocities. Critical to modeling contact
forces is accurate prediction of velocity.

Table 9: Hyper-parameters used for Armhand environment.
Hyper-parameter Value Ensemble Parameter Value

variance of controls 0.22 Models in Ensemble 6
temperature parameter 0.08 Mass U(0.01, 1.0)
planning horizon 50 Center of Mass U(−0.04, 0.04)× 3
number of planning samples 64 Moments of Inertia U(0.0001, 0.0004)
prior parameter 0.0001 Contact Param. (solimp) [U(0.5, 0.99),

U(0.4, 0.98),
U(0.0001, 0.01),
U(0.49, 0.51),
U(1.9, 2.1)]

posterior reshaping constant 0.01 Contact Param. (solref) [U(0.01, 0.03),
U(0.9, 1.1)]

episodes between model updates 1

Table 10: Learned model predictive error for different features.
Feature method Predictive Error:

‖xh+1 −Wφ‖2/‖Wφ‖2

Random Fourier Features, 2048 0.22
2 Layer Neural Network, 2048 hidden, relu activation 0.41
Model Ensemble of 6 models 0.09
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