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Abstract

Partial observability is a common challenge in many reinforcement learning applications, which

requires an agent to maintain memory, infer latent states, and integrate this past information into explo-

ration. This challenge leads to a number of computational and statistical hardness results for learning gen-

eral Partially Observable Markov Decision Processes (POMDPs). This work shows that these hardness

barriers do not preclude efficient reinforcement learning for rich and interesting subclasses of POMDPs.

In particular, we present a sample-efficient algorithm, OOM-UCB, for episodic finite undercomplete

POMDPs, where the number of observations is larger than the number of latent states and where explo-

ration is essential for learning, thus distinguishing our results from prior works. OOM-UCB achieves

an optimal sample complexity of Õ(1/ε2) for finding an ε-optimal policy, along with being polynomial

in all other relevant quantities. As an interesting special case, we also provide a computationally and

statistically efficient algorithm for POMDPs with deterministic state transitions.

1 Introduction

In many sequential decision making settings, the agent lacks complete information about the underlying state

of the system, a phenomenon known as partial observability. Partial observability significantly complicates

the tasks of reinforcement learning and planning, because the non-Markovian nature of the observations

forces the agent to maintain memory and reason about beliefs of the system state, all while exploring to

collect information about the environment. For example, a robot may not be able to perceive all objects

in the environment due to occlusions, and it must reason about how these objects may move to avoid col-

lisions [10]. Similar reasoning problems arise in imperfect information games [8], medical diagnosis [13],

and elsewhere [25]. Furthermore, from a theoretical perspective, well-known complexity-theoretic results

show that learning and planning in partially observable environments is statistically and computationally

intractable in general [23, 22, 30, 21].

The standard formulation for reinforcement learning with partial observability is the Partially Observ-

able Markov Decision Process (POMDP), in which an agent operating on noisy observations makes deci-
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sions that influence the evolution of a latent state. The complexity barriers apply for this model, but they are

of a worst case nature, and they do not preclude efficient algorithms for interesting sub-classes of POMDPs.

Thus we ask:

Can we develop efficient algorithms for reinforcement learning in large classes of POMDPs?

This question has been studied in recent works [3, 12], which incorporate a decision making component into

a long line of work on “spectral methods” for estimation in latent variable models [14, 29, 1, 2], including

the Hidden Markov Model. Briefly, these estimation results are based on the method of moments, showing

that under certain assumptions the model parameters can be computed by a decomposition of a low-degree

moment tensor. The works of Azizzadenesheli et al. [3] and Guo et al. [12] use tensor decompositions in the

POMDP setting and obtain sample efficiency guarantees. Neither result considers a setting where strategic

exploration is essential for information acquisition, and they do not address one of the central challenges in

more general reinforcement learning problems.

Our contributions. In this work, we provide new sample-efficient algorithms for reinforcement learning

in finite POMDPs in the undercomplete regime, where the number of observations is larger than the number

of latent states. This assumption is quite standard in the literature on estimation in latent variable models [2].

Our main algorithm OOM-UCB uses the principle of optimism for exploration and uses the information

gathered to estimate the Observable Operators induced by the environment. Our main result proves that

OOM-UCB finds a near optimal policy for the POMDP using a number of samples that scales polynomi-

ally with all relevant parameters and additionally with the minimum singular value of the emission matrix.

Notably, OOM-UCB finds an ε-optimal policy at the optimal rate of Õ(1/ε2).
While OOM-UCB is statistically efficient for this subclass of POMDPs, we should not expect it to be

computationally efficient in general, as this would violate computational barriers for POMDPs. However, in

our second contribution, we consider a further restricted subclass of POMDPs in which the latent dynamics

are deterministic and where we provide both a computationally and statistically efficient algorithm. Notably,

deterministic dynamics are still an interesting subclass due to that, while it avoids computational barriers,

it still does not mitigate the need for strategic exploration. We prove that our second algorithm has sample

complexity scaling with all the relevant parameters as well as the minimum ℓ2 distance between emission

distributions. This latter quantity replaces the minimum singular value in the guarantee for OOM-UCB and

is a more favorable dependency.

We provide further motivation for our assumptions with two lower bounds: the first shows that the

overcomplete setting is statistically intractable without additional assumptions, while the second necessitates

the dependence on the minimum singular value of the emission matrix. In particular, under our assumptions,

the agent must engage in strategic exploration for sample-efficiency. As such, the main conceptual advance

in our line of inquiry over prior works is that our algorithms address exploration and partial observability in

a provably efficient manner.

1.1 Related work

A number of computational barriers for POMDPs are known. If the parameters are known, it is PSPACE-

complete to compute the optimal policy, and, furthermore, it is NP-hard to compute the optimal memoryless

policy [23, 30]. With regards to learning, Mossel and Roch [21] provided an average case computationally

complexity result, showing that parameter estimation for a subclass of Hidden Markov Models (HMMs) is
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at least as hard as learning parity with noise. This directly implies the same hardness result for parameter

estimation in POMDP models, due to that an HMM is just a POMDP with a fixed action sequence. On

the other hand, for reinforcement learning in POMDPs (in particular, finding a near optimal policy), one

may not need to estimate the model, so this lower bound need not directly imply that the RL problem is

computational intractable. In this work, we do provide a lower bound showing that reinforcement learning

in POMDPs is both statistically and computationally intractable (Propositions 1 and 2).

On the positive side, there is a long history of work on learning POMDPs. [11] studied POMDPs

without resets, where the proposed algorithm has sample complexity scaling exponentially with a certain

horizon time, which is not possible to relax without further restrictions. [26, 24] proposed to learn POMDPs

using Bayesian methods; PAC or regret bounds are not known for these approaches. [18] studied policy

gradient methods for learning POMDPs while they considered only Markovian policies and did not address

exploration.

Closest to our work are POMDP algorithms based on spectral methods [12, 3], which were originally

developed for learning latent variable models [14, 1, 2, 29, 28]. These works give PAC and regret bounds

(respectively) for tractable subclasses of POMDPs, but, in contrast with our work, they make additional

assumptions to mitigate the exploration challenge. In [12], it is assumed that all latent states can be reached

with nontrivial probability with a constant number of random actions. This allows for estimating the entire

model without sophisticated exploration. [3] consider a special class of memoryless policies in a setting

where all of these policies visit every state and take every action with non-trivial probability. As with [12],

this restriction guarantees that the entire model can be estimated regardless of the policy executed, so so-

phisticated exploration is not required. We also mention that [12, 3] assume that both the transition and

observation matrices are full rank, which is stronger than our assumptions. We do not make any assump-

tions on the transition matrix.

Finally, the idea of representing the probability of a sequence as products of operators dates back to

multiplicity automata [27, 9] and reappeared in the Observable Operator Model (OOMs) [16] and Predictive

State Representations (PSRs) [20]. While spectral methods have been applied to PSRs [7], we are not aware

of results with provable guarantees using this approach. It is also worth mentioning that any POMDP can

be modeled as an Input-Output OOM [15].

2 Preliminaries

In this section, we define the partially observable Markov decision process, the observable operator model [16],

and discuss their relationship.

Notation. For any natural number n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We use bold upper-

case letters B to denote matrices and bold lower-case letters b to denote vectors. Bij means the (i, j)th

entry of matrix B and (B)i represents its ith column. For vectors we use ‖·‖p to denote the ℓp-norm, and

for matrices we use ‖·‖, ‖·‖1 and ‖·‖F to denote the spectral norm, entrywise ℓ1-norm and Frobenius norm

respectively. We denote by ‖B‖p→q = max‖v‖p≤1 ‖Bv‖q the p-to-q norm of B. For any matrix B ∈ R
m×n,

we use σmin(B) to denote its smallest singular value, and B† ∈ R
n×m to denote its Moore-Penrose inverse.

For vector v ∈ R
n, we denote diag(v) ∈ R

n×n as a diagonal matrix where [diag(v)]ii = vi for all i ∈ [n].
Finally, we use standard big-O and big-Omega notation O(·),Ω(·) to hide only absolute constants which

do not depend on any problem parameters, and notation Õ(·), Ω̃(·) to hide only absolute constants and
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logarithmic factors.

2.1 Partially observable Markov decision processes

We consider an episodic tabular Partially Observable Markov Decision Process (POMDP), which can by

specified as POMDP(H,S ,A ,O,T,O, r, µ1). Here H is the number of steps in each episode, S is the

set of states with |S | = S, A is the set of actions with |A | = A, O is the set of observations with |O| = O,

T = {Th}Hh=1 specify the transition dynamics such that Th(·|s, a) is the distribution over states if action a
is taken from state s at step h ∈ [H], O = {Oh}Hh=1 are emissions such that Oh(·|s) is the distribution over

observations for state s at step h ∈ [H], r = {rh : O → [0, 1]}Hh=1 are the known deterministic reward

functions1 , and µ1(·) is the initial distribution over states. Note that we consider nonstationary dynamics,

observations, and rewards.

In a POMDP, states are hidden and unobserved to the learning agent. Instead, the agent is only able

to see the observations and its own actions. At the beginning of each episode, an initial hidden state s1
is sampled from initial distribution µ1. At each step h ∈ [H], the agent first observes oh ∈ O which is

generated from the hidden state sh ∈ S according to Oh(·|sh), and receives the reward rh(oh), which

can be computed from the observation oh. Then, the agent picks an action ah ∈ A , which causes the

environment to transition to hidden state sh+1, that is drawn from the distribution Th(·|sh, ah). The episode

ends when oH is observed.

A policy π is a collection of H functions
{
πh : Th → A

}

h∈[H]
, where Th = (O ×A )h−1 × O is the

set of all possible histories of length h. We use V π ∈ R to denote the value of policy π, so that V π gives the

expected cumulative reward received under policy π:

V π := Eπ

[
∑H

h=1 rh(oh)
]

.

Since the state, action, observation spaces, and the horizon, are all finite, there always exists an optimal

policy π⋆ which gives the optimal value V ⋆ = supπ V
π . We remark that, in general, the optimal policy of a

POMDP will select actions based the entire history, rather than just the recent observations and actions. This

is one of the major differences between POMDPs and standard Markov Decision Processes (MDPs), where

the optimal policies are functions of the most recently observed state. This difference makes POMDPs

significantly more challenging to solve.

The POMDP learning objective. Our objective in this paper is to learn an ε-optimal policy π̂ in the sense

that V π̂ ≥ V ⋆ − ε, using a polynomial number of samples.

2.2 The observable operator model

We have described the POMDP model via the transition and observation distributions T,O and the initial dis-

tribution µ1. While this parametrization is natural for describing the dynamics of the system, POMDPs can

also be fully specified via a different set of parameters: a set of operators {Bh(a, o) ∈ R
O×O}h∈[H−1],a∈A ,o∈O ,

and a vector b0 ∈ R
O.

1Since rewards are observable in most applications, it is natural to assume the reward is a known function of the observation.

While we study deterministic reward functions for notational simplicity, our results generalize to randomized reward functions.

Also, we assume the reward is in [0, 1] without loss of generality.
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In the undercomplete setting where S ≤ O and where observation probability matrices {Oh ∈ R
O×S}h∈[H]

are all full column-rank, the operators {Bh(a, o)}h,a,o and vector b0 can be expressed in terms of (T,O, µ1)
as follows:

Bh(a, o) = Oh+1Th(a)diag(Oh(o|·))O†
h, b0 = O1µ1. (1)

where we use the matrix and vector notation for Oh ∈ R
O×S and µ1 ∈ R

S here, such that [Oh]o,s = Oh(o|s)
and [µ1]s = µ1(s). Th(a) ∈ R

S×S denotes the transition matrix given action a ∈ A where [Th(a)]s′,s =
Th(s

′|s, a), and Oh(o|·) ∈ R
S denotes the o-th row in matrix Oh with [Oh(o|·)]s = Oh(o|s). Note that the

matices defined in (1) have rank at most S. Using these matrices Bh, it can be shown that (Appendix E.1),

for any sequence of (oH , . . . , a1, o1) ∈ O × (A × O)H−1, we have:

P(oH , . . . , o1|aH−1, . . . , a1) = e⊤oH ·BH−1(aH−1, oH−1) · · ·B1(a1, o1) · b0. (2)

Describing these conditional probabilities for every sequence is sufficient to fully specify the entire dynami-

cal system. Therefore, as an alternative to directly learning T,O and µ1, it is also sufficient to learn operators

{Bh(a, o)}h,a,o and vector b0 in order to learn the optimal policy. The latter approach enjoys the advan-

tage that (2) does not explicitly involve latent variables. It refers only to observable quantities—actions and

observations.

We remark that the operator model introduced in this section (which is parameterized by {Bh(a, o)}h,a,o
and b0) bears significant similarity to Jaeger’s Input-Output Observable Operator Model (IO-OOM) [16],

except a few minor technical differences.2 With some abuse of terminology, we also refer to our model as

Observable Operator Model (OOM) in this paper. It is worth noting that Jaeger’s IO-OOMs are strictly more

general than POMDPs [16] and also includes overcomplete POMDPs via a relation different from (1). Since

our focus is on undercomplete POMDPs, we refer the reader to [16] for more details.

3 Main Results

We first state our main assumptions, which we motivate with corresponding hardness results in their absence.

We then present our main algorithm, OOM-UCB, along with its sample efficiency guarantee.

3.1 Assumptions

In this paper, we make the following assumptions.

Assumption 1. We assume the POMDP is undercomplete, i.e. S ≤ O. We also assume the minimum

singular value of the observation probability matrices σmin(Oh) ≥ α > 0 for all h ∈ [H].

Both assumptions are standard in the literature on learning Hidden Markov Models (HMMs)—an un-

controlled version of POMDP [see e.g., 1]. The second assumption that σmin(Oh) is lower-bounded is a

robust version of the assumption that Oh ∈ R
O×S is full column-rank, which is equivalent to σmin(Oh) > 0.

Together, these assumption ensure that the observations will contain a reasonable amount of information

about the latent states.

We do not assume that the initial distribution µ1 has full support, nor do we assume the transition

probability matrices Th are full rank. In fact, Assumption 1 is not sufficient for identification of the system,

2Jaeger’s IO-OOM further requires the column-sums of operators to be 1.
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Algorithm 1 Observable Operator Model with Upper Confidence Bound (OOM-UCB)

1: Initialize: set all entries in a vector of counts n ∈ N
O, and in matrices of counts Nh(a, ã) ∈ N

O×O,

Mh(o, a, ã) ∈ N
O×O to be zero for all (o, a, ã) ∈ O ×A 2

2: set confidence set Θ1 ← ∩h∈[H]{θ̂ | σmin(Ôh) ≥ α}.
3: for k = 1, 2, . . . ,K do

4: compute the optimistic policy πk ← argmaxπ max
θ̂∈Θk

V π(θ̂).
5: observe o1, and set n← n+ eo1
6: b← (∩h∈[H]{θ̂ | σmin(Ôh) ≥ α}) ∩ {θ̂ | ‖k · b0(θ̂)− n‖2 ≤ βk}.
7: for (h, a, ã) ∈ [H − 1]×A 2 do

8: execute policy πk from step 1 to step h− 2.

9: take action ã at step h− 1, and action a at step h respectively.

10: observe (oh−1, oh, oh+1), and set Nh(a, ã)← Nh(a, ã) + eohe
⊤
oh−1

.

11: set Mh(oh, a, ã)←Mh(oh, a, ã) + eoh+1
e⊤oh−1

.

12: Bh(a, ã)← ∩o∈O{θ̂ | ‖Bh(a, o; θ̂)Nh(a, ã)−Mh(o, a, ã)‖F ≤ γk}.
13: construct the confidence set Θk+1 ← [∩(h,a,ã)∈[H−1]×A 2Bh(a, ã)] ∩ b.

14: Output: πk where k is sampled uniformly from [K].

i.e. recovering parameters T,O, µ1 in total-variance distance. Exploration is crucial to find a near-optimal

policy in our setting.

We motivate both assumptions above by showing that, with absence of either one, learning a POMDP

is statistically intractable. That is, it would require an exponential number of samples for any algorithm to

learn a near-optimal policy with constant probability.

Proposition 1. For any algorithm A, there exists an overcomplete POMDP (S > O) with S and O being

small constants, which satisfies σmin(Oh) = 1 for all h ∈ [H], such that algorithm A requires at least

Ω(AH−1) samples to ensure learning a (1/4)-optimal policy with probability at least 1/2.

Proposition 2. For any algorithm A, there exists an undercomplete POMDP (S ≤ O) with S and O being

small constants, such that algorithm A requires at least Ω(AH−1) samples to ensure learning a (1/4)-
optimal policy with probability at least 1/2.

Proposition 1 and 2 are both proved by constructing hard instances, which are modifications of classical

combinatorial locks for MDPs [19]. We refer readers to Appendix B for more details.

3.2 Algorithm

We are now ready to describe our algorithm. Assumption 1 enables the representation of the POMDP using

OOM with relation specified as in Equation (1). Our algorithm, Observable Operator Model with Upper

Confidence Bound (OOM-UCB, algorithm 1), is an optimistic algorithm which heavily exploits the OOM

representation to obtain valid uncertainty estimates of the parameters of the underlying model.

To condense notation in Algorithm 1, we denote the parameters of a POMDP as θ = (T,O, µ1). We de-

note V π(θ) as the value of policy π if the underlying POMDP has parameter θ. We also write the parameters

of the OOM (b0(θ),Bh(a, o; θ)) as a function of parameter θ, where the dependency is specified as in (1).

We adopt the convention that at the 0-th step, the observation o0 and state s0 are always set to be some fixed
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dummy observation and state, and, starting from s0, the environment transitions to s1 with distribution µ1

regardless of what action a0 is taken.

At a high level, Algorithm 1 is an iterative algorithm that, in each iteration, (a) computes an optimistic

policy and model by maximizing the value (Line 4) subject to a given confidence set constraint, (b) collects

data using the optimistic policy, and (c) incorporates the data into an updated confidence set for the OOM

parameters (Line 5-13). The first two parts are straightforward, so we focus the discussion on computing

the confidence set. We remark that in general the optimization in Line 4 may not be solved in polynomial

time (see discussions of the computational complexity after Theorem 3).

First, since b0 in (1) is simply the probability over observations at the first step, our confidence set for

b0 in Line 6 is simply based on counting the number of times each observation appears in the first step and

Hoeffding’s concentration inequality.

Our construction of the confidence sets for the operators {Bh(a, o)}h,a,o is inspired by the method-of-

moments estimator in HMM literature [14]. Consider two fixed actions a, ã, and an arbitrary distribution

over sh−1. Let Ph(a, ã),Qh(o, a, ã) ∈ R
O×O be the probability matrices such that

[Ph(a, ã)]o′,o′′ =P(oh = o′, oh−1 = o′′|ah = a, ah−1 = ã),

[Qh(o, a, ã)]o′,o′′ =P(oh+1 = o′, oh = o, oh−1 = o′′|ah = a, ah−1 = ã). (3)

It can be verified that Bh(a, o)Ph(a, ã) = Qh(o, a, ã) (Fact 17 in the appendix). Our confidence set con-

struction (Line 12 in Algorithm 1) is based on this fact: we replace the probability matrices P,Q by em-

pirical estimates N,M, and we use concentration inequalities to determine the width of the confidence set.

Finally, our overall confidence set for the parameters θ is simply the intersection of the confidence sets for

all induced operators and b0, additionally incorporating the constraint on σmin(Oh) from Assumption 1.

3.3 Theoretical guarantees

Our OOM-UCB algorithm enjoys the following sample complexity guarantee.

Theorem 3. For any ε ∈ (0,H], there exists Kmax = poly(H,S,A,O, α−1)/ε2 and an absolute constant

c1, such that for any POMDP that satisfies Assumption 1, if we set hyperparameters βk = c1
√

k log(KAOH),
γk =

√
Sβk/α, and K ≥ Kmax, then the output policy π̂ of Algorithm 1 will be ε-optimal with probability

at least 2/3.

Theorem 3 claims that in polynomially many iterations of the outer loop, Algorithm 1 learns a near-

optimal policy for any undercomplete POMDP that satisfies Assumption 1. Since our algorithm only

uses O(H2A2) samples per iteration of the outer loop, this implies that the sample complexity is also

poly(H,S,A,O, α−1)/ε2. We remark that the 1/ε2 dependence is optimal, which follows from standard

concentration arguments. To the best of our knowledge, this is the first sample efficiency result for learning

a class of POMDPs where exploration is essential. 3

While Theorem 3 does guarantee sample efficiency, Algorithm 1 is not computationally efficient due

to that the computation of the optimistic policy (Line 4) may not admit a polynomial time implementation,

which should be expected given the aforementioned computational complexity results. We now turn to a

further restricted (and interesting) subclass of POMDPs where we can address both the computational and

statistical challenges.

3See Appendix C.4 for the explicit polynomial dependence of sample complexity; here, the success probability is a constant,

but one can make it arbitrarily close to 1 by a standard boosting trick (see Appendix E.3 ).
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4 Results for POMDPs with Deterministic Transition

In this section, we complement our main result by investigating the class of POMDPs with deterministic

transitions, where both computational and statistical efficiency can be achieved. We say a POMDP is of

deterministic transition if both its transition and initial distribution are deterministic, i.e, if the entries of

matrices {Th}h and vector µ1 are either 0 or 1. We remark that while deterministic dynamics avoids com-

putational barriers, it does not mitigate the need for exploration.

Instead of Assumption 1, for the deterministic transition case, we require that the columns of the obser-

vation matrices Oh are well-separated.

Assumption 2. For any h ∈ [H], mins 6=s′ ‖Oh(·|s)−Oh(·|s′)‖ ≥ ξ.

Assumption 2 guarantees that observation distributions for different states are sufficiently different, by

at least ξ in Euclidean norm. It does not require that the POMDP is undercomplete, and, in fact, is strictly

weaker than Assumption 1. In particular, for undercomplete models, mins 6=s′ ‖Oh(·|s)−Oh(·|s′)‖ ≥√
2σmin(Oh), and so Assumption 1 implies Assumption 2 for ξ =

√
2α.

Leveraging deterministic transitions, we can design a specialized algorithm (Algorithm 2 in the ap-

pendix) that learns an ε-optimal policy using polynomially many samples and in polynomial time. We

present the formal theorem here, and refer readers to Appendix D for more details.

Theorem 4. For any p ∈ (0, 1], there exists an algorithm such that for any deterministic transition POMDP

satisfying Assumption 2, within O
(

H2SA log(HSA/p)/(min{ε/(
√
OH), ξ})2

)

samples and computa-

tions, the output policy of the algorithm is ε-optimal with probability at least 1− p.

5 Analysis Overview

In this section, we provide an overview of the proof of our main result—Theorem 3. Please refer to Appendix

C for the full proof.

We start our analysis by noticing that the output policy π̂ of Algorithm 1 is uniformly sampled from

{πk}Kk=1 computed in the algorithm. If we can show that

(1/K)
∑K

k=1 V
⋆ − V πk ≤ ε/10, (4)

then at least a 2/3 fraction of the policies in {πk}Kk=1 must be ε-optimal, and uniform sampling would find

such a policy with probability at least 2/3. Therefore, our proof focuses on achieving (4).

We begin by conditioning on the event that for each iteration k, our constructed confidence set Θk in

fact contains the true parameters θ⋆ = (T,O, µ1) of the POMDP. This holds with high probability and is

achieved by setting the widths βk and γk appropriately (see Lemma 14 in the appendix).

5.1 Bounding suboptimality in value by error in density estimation

Line 4 of Algorithm 1 computes the greedy policy πk ← argmaxπ max
θ̂∈Θk

V π(θ̂) with respect to the

current confidence set Θk. Let θk denote the maximizing model parameters in the k-th iteration. As (πk, θk)
are optimistic, we have V ⋆ ≡ V ⋆(θ⋆) ≤ V πk(θk) for all k ∈ [K]. Thus, for any k ∈ [K]:

V ⋆ − V πk ≤ V πk(θk)− V πk(θ⋆) ≤ H
∑

oH ,...,o1

|Pπk

θk
(oH , . . . , o1)− P

πk

θ⋆ (oH , . . . , o1)|, (5)
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where P
π
θ denotes the probability measure over observations under policy π for POMDP with parameters θ.

The second inequality holds because the cumulative reward is a function of observations (oH , . . . , o1) and is

upper bounded by H . This upper bounds the suboptimality in value by the total variation distance between

the H-step observation distributions.

Next, note that we can always choose the greedy policy πk to be deterministic, i.e., the probability to

take any action given a history is either 0 or 1. This allows us to define the following set for any deterministic

policy π:

Γ(π,H) := {τH = (oH , . . . , a1, o1) | π(aH−1, . . . , a1|oH , . . . , o1) = 1}.
In words, Γ(π,H) is a set of all the observation and action sequences of length H that could occur under

the π. For any deterministic policy π, there is a one-to-one correspondence between OH and Γ(π,H) and

moreover, for any sequence τH = (oH , . . . , a1, o1) ∈ Γ(π,H), we have:

p(τH ; θ) := Pθ(oH , . . . , o1|aH−1, . . . , a1) = P
π
θ (oH , . . . , o1). (6)

The derivation of equation (6) can be found in Appendix E.2. Combining this with (5) and summing over

all episodes, we conclude that:

K∑

k=1

(V ⋆ − V πk) ≤ H

K∑

k=1

∑

τH∈Γ(πk,H)

|p(τH ; θk)− p(τH ; θ⋆)|.

This upper bounds the suboptimality in value by errors in estimating the conditional probabilities.

5.2 Bounding error in density estimation by error in estimating operators

For the next step, we leverage the OOM representation to bound the difference between the conditional

probabilities p(τH ; θk) and p(τH ; θ⋆). Recall that from (2), the conditional probability can be written as a

product of the observable operators for each step and b0. Therefore, for any two parameters θ̂ and θ, we

have following relation for any sequence τH = (oH , . . . , a1, o1):

p(τH ; θ̂)− p(τH ; θ) = e⊤oH ·BH−1(aH−1, oH−1; θ̂) · · ·B1(a1, o1; θ̂) · [b0(θ̂)− b0(θ)]

+

H−1∑

h=1

e⊤oH ·BH−1(aH−1, oH−1; θ̂) · · · [Bh(ah, oh; θ̂)−Bh(ah, oh; θ)] · · ·B1(a1, o1; θ) · b0(θ).

This relates the difference p(τH ; θ̂)− p(τH ; θ) to the differences in operators and b0. Formally, with further

relaxation and summation over all sequence in Γ(π,H), we have the following lemma (also see Lemma 10

in Appendix C).

Lemma 5. Given a deterministic policy π and two sets of undercomplete POMDP parameters θ = (O,T, µ1)
and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, we have

∑

τH∈Γ(π,H)

|p(τH ; θ̂)− p(τH ; θ)| ≤
√
S

α



‖b0(θ̂)− b0(θ)‖1 +
∑

(a,o)∈A ×O

‖[B1(a, o; θ̂)−B1(a, o; θ)]b0(θ)‖1

+

H−1∑

h=2

∑

(a,ã,o)∈A 2×O

S∑

s=1

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ)
)

OhTh−1(ã)es

∥
∥
∥
1
P
π
θ (sh−1 = s)



 . (7)
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This lemma suggests that if we could estimate the operators accurately, we would have small value sub-

optimality. However, Assumption 1 is not sufficient for parameter recovery. It is possible that in some step

h, there exists a state sh that can be reached with only very small probability no matter what policy is used.

Since we cannot collect many samples from sh, it is not possible to estimate the corresponding component in

the operator Bh. In other words, we cannot hope to make ‖Bh(a, o; θ̂)−Bh(a, o; θ)‖1 small in our setting.

To proceed, it is crucial to observe that the third term on the RHS of (7), is in fact the operator error

Bh(a, o; θ̂) − Bh(a, o; θ) projected onto the direction OhTh−1(ã)es and additionally reweighted by the

probability of visiting state s in step h− 1. Therefore, if s is hard to reach, the weighting probability will be

very small, which means that even though we cannot estimate Bh(a, o; θ) accurately in the corresponding

direction, it has a negligible contribution to the density estimation error (LHS of (7)).

5.3 Bounding error in estimating operators by OOM-UCB algorithm

By Lemma 5, we only need to bound the error in operators reweighted by visitation probability. This is

achieved by a careful design of the confidence sets in the OOM-UCB algorithm. This construction is based

on the method of moments, which heavily exploits the undercompleteness of the POMDP. To showcase the

main idea, we focus on bounding the third term on the RHS of (7).

Consider a fixed (o, a, ã) tuple, a fixed step h ∈ [H], and a fixed iteration k ∈ [K]. We define

moment matrices Ph(a, ã),Qh(o, a, ã) ∈ R
O×O as in (3) for distribution on sh−1 that equals (1/k) ·

∑k
t=1 P

πt

θ⋆(sh−1 = ·). We also denote P̂h(a, ã) = Nh(a, ã)/k, Q̂h(o, a, ã) = Mh(o, a, ã)/k for Nh,Mh

matrices after the update in the k-th iteration of Algorithm 1. By martingale concentration, it is not hard to

show that with high probability:

‖Ph(a, ã)− P̂h(a, ã)‖F ≤ Õ(1/
√
k), ‖Qh(o, a, ã)− Q̂h(o, a, ã)‖F ≤ Õ(1/

√
k).

Additionally, we can show that for the true operator and the true moments, we have Bh(a, o; θ
⋆)Ph(a, ã) =

Qh(o, a, ã). Meanwhile, by the construction of our confidence set Θk+1, we know that for any θ̂ ∈ Θk+1,

we have

‖Bh(a, o; θ̂)P̂h(a, ã)− Q̂h(o, a, ã)‖F ≤ γk/k.

Combining all relations above, we see that Bh(a, o; θ̂) is accurate in the directions spanned by Ph(a, ã),
which, by definition, are directions frequently visited by the previous policies {πt}kt=1. Formally, we have

the following lemma, which allows us to bound the third term on the RHS of (7) using the algebraic trans-

formation in Lemma 16.

Lemma 6. With probability at least 1−δ, for all k ∈ [K], for any θ̂ = (Ô, T̂, µ̂1) ∈ Θk+1 and (o, a, ã, h) ∈
O ×A 2 × {2, . . . ,H − 1}, and ι = log(KAOH/δ), we have

S∑

s=1

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

OhTh−1(ã)es

∥
∥
∥
1

k∑

t=1

P
πt

θ⋆(sh−1 = s) ≤ O
(√

kS2Oι

α4

)

.

6 Conclusion

In this paper, we give a sample efficient algorithm for reinforcement learning in undercomplete POMDPs.

Our results leverage a connection to the observable operator model and employ a refined error analysis. To

our knowledge, this gives the first provably efficient algorithm for strategic exploration in partially observ-

able environments.
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A Notation

Below, we introduce some notations that will be used in appendices.

notation definition

nk value of n after the update in the kth iteration of Algorithm 1

Nk
h(a, ã) value of Nh(a, ã) after the update in the kth iteration of

Algorithm 1

Mk
h(o, a, ã) value of Mh(o, a, ã) after the update in the kth iteration of

Algorithm 1

θ a parameter triple (T,O, µ1) of a POMDP

θ⋆ the groundtruth POMDP parameter triple

POMDP(θ) POMDP(H,S ,A ,O,T,O, r, µ1)

τh
4 a length-h trajectory: τh = [ah, oh, . . . , a1, o1] ∈ (A × O)h

Γ(π, h)5 {τh = (ah, oh, . . . , a1, o1) | π(ah, . . . , a1|oh, . . . , o1) = 1}.
b(τh; θ) Bh(ah, oh; θ) · · ·B1(a1, o1; θ) · b0(θ)

P
π
θ (sh = s) probability of visiting state s at hth step when executing policy π

on POMDP(θ)

1(x = y) equal to 1 if x = y and 0 otherwise.

eo an O-dimensional vector with (eo)i = 1(o = i)

(X)o the oth column of matrix X

In n× n identity matrix

Cpoly poly(S,O,A,H, 1/α, log(1/δ))

ι log(AOHK/δ)

Let x ∈ R
nx , y ∈ R

ny and z ∈ R
nz . We denote by x⊗y⊗z the tensor product of vectors x, y and z, an

nx×ny×nz tensor with (i, j, k)th entry equal to xiyjzk. Let X ∈ R
nX×m, Y ∈ R

nY ×m and Z ∈ R
nZ×m.

We generalize the notation of tensor product to matrices by defining X⊗Y⊗Z =
∑m

l=1(X)l⊗(Y)l⊗(Z)l,
which is an nX × nY × nZ tensor with (i, j, k)th entry equal to

∑m
l=1XilYjlZkl.

Let X be a random variable taking value in [m], we denote by P(X = ·) an m-dimensional vector whose

ith entry is P(X = i).

3Note that this definition is different from the one used in Section 5, where τh = [oh, . . . , a1, o1] ∈ O × (A ×O)h−1 does not

include the action ah at hth step.
4WLOG, all the polices considered in this paper are deterministic. Also note that the trajectory in Γ(π, h) contains ah, which is

different from the definition in Section 5
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B Proof of Hardness Results

The hard examples constructed below are variants of the ones used in [19].

Proposition 1. For any algorithm A, there exists an overcomplete POMDP (S > O) with S and O being

small constants, which satisfies σmin(Oh) = 1 for all h ∈ [H], such that algorithm A requires at least

Ω(AH−1) samples to ensure learning a (1/4)-optimal policy with probability at least 1/2.

Proof. Consider the following H-step nonstationary POMDP:

1. STATE There are four states: two good states g1 and g2 and two bad states b1 and b2. The initial state

is picked uniformly at random.

2. OBSERVATION There are only two different observations u1 and u2. At step h ∈ [H−1], we always

observe u1 at g1 and b1, and observe u2 at g2 and b2. At step H , we always observe u1 at good states

and u2 at bad states. It’s direct to verify σmin(Oh) = 1 for all h ∈ [H].

3. REWARD There is no reward at the fist H − 1 steps (i.e. rh = 0 for all h ∈ [H − 1]). At step H , we

receive reward 1 if we observe u1 and no reward otherwise (i.e. rH(o) = 1(o = u1)).

4. TRANSITION There is one good action a⋆h and A − 1 bad actions for each h ∈ [H − 1]. At step

h ∈ [H − 1], suppose we are at a good state (g1 or g2), then we will transfer to g1 or g2 uniformly at

random if we take a⋆h and otherwise transfer to b1 or b2 uniformly at random. In contrast, if we are at

a bad state (b1 or b2), we will always transfer to b1 or b2 uniformly at random no matter what action

we take. Note that two good (bad) states are equivalent in terms of transition.

We have the following key observations:

1. Once we are at bad states, we always stay at bad states.

2. We have

P(o1:H−1 = z | a1:H−1, oH) =
1

2H−1

for any z ∈ {u1, u2}H−1 and (a1:H−1, oH) ∈ [A]H−1 × {u1, u2}

Therefore, the observations at the first H − 1 steps provide no information about the underlying

transition. The only useful information is the last observation oH which tells us whether we end in

good states or not.

3. The optimal policy is unique and is to execute the good action sequence (a⋆1, . . . , a
⋆
H−1) regardless of

the obervations.

Based on the observations above, this is equivalent to a multi-arm bandits problem with AH−1 arms. There-

fore, we cannot do better than Brute-force search, which has sample complexity at least Ω(AH−1).

Proposition 2. For any algorithm A, there exists an undercomplete POMDP (S ≤ O) with S and O being

small constants, such that algorithm A requires at least Ω(AH−1) samples to ensure learning a (1/4)-
optimal policy with probability at least 1/2.
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Proof. We continue to use the POMDP constructed in Proposition 1 and slightly modify it by splitting u2
into another 4 different observations {q1, q2, q3, q4}, so in the new POMDP (O = 5 > S = 4), we will

observe a qi picked uniformly at random from {q1, q2, q3, q4} when we are ’supposed’ to observe u2. It’s

easy to see the modification does not change its hardness.

C Analysis of OMM-UCB

Throughout the proof, we use τh to denote a length-h trajectory: [ah, oh, . . . , a1, o1] ∈ (A ×O)h. Note that

this definition is different from the one used in Section 5, where τh = [oh, . . . , a1, o1] ∈ O × (A × O)h−1

does not include the action ah at hth step. Besides, we define

Γ(π, h) = {τh = (ah, oh, . . . , a1, o1) | π(ah, . . . , a1|oh, . . . , o1) = 1},

which is also different from the definition in Section 5 where ah is not included.

Please refer to Appendix A for definitions of frequently used notations.

C.1 Bounding the error in belief states

In this subsection, we will bound the error in (unnormalized) belief states, i.e., b(τh; θ) − b(τh; θ̂) by the

error in operators reweighed by the probability distribution of visited states.

We start by proving the following lemma that helps us decompose the error in belief states inductively.

Lemma 7. Given a deterministic policy π and two set of POMDP parameters θ̂ = (Ô, T̂, µ̂1) and θ =

(O,T, µ1), for all h ≥ 1 and X ∈ {IO, Ô†
h+1}, we have

∑

τh∈Γ(π,h)

∥
∥
∥X

(

b(τh; θ)− b(τh; θ̂)
)∥
∥
∥
1
≤

∑

τh−1∈Γ(π,h−1)

∥
∥
∥Ô

†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
)∥
∥
∥
1

+
∑

τh∈Γ(π,h)

∥
∥
∥X

(

Bh(ah, oh; θ̂)−Bh(ah, oh; θ)
)

b(τh−1; θ)
∥
∥
∥
1
.

Proof. By the definition of b(τh; θ) and b(τh; θ̂),

∑

τh∈Γ(π,h)
‖X
(

b(τh; θ)− b(τh; θ̂)
)

‖1

=
∑

τh∈Γ(π,h)
‖X
(

Bh(ah, oh; θ)b(τh−1; θ)−Bh(ah, oh; θ̂)b(τh−1; θ̂)
)

‖1

≤
∑

τh∈Γ(π,h)
‖XBh(ah, oh; θ̂)

(

b(τh−1; θ)− b(τh−1; θ̂)
)

‖1

+
∑

τh∈Γ(π,h)
‖X
(

Bh(ah, oh; θ̂)−Bh(ah, oh; θ)
)

b(τh−1; θ)‖1.
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The first term can be bounded as following,

∑

τh∈Γ(π,h)
‖XBh(ah, oh; θ̂)(b(τh−1; θ)− b(τh−1; θ̂))‖1

=
∑

τh∈Γ(π,h)
‖XÔh+1T̂h(ah)diag(Ôh(oh | ·))Ô†

h

(

b(τh−1; θ)− b(τh−1; θ̂)
)

‖1

≤
∑

τh∈Γ(π,h)

∑

i

∥
∥
∥

(

XÔh+1T̂h(ah)diag(Ôh(oh | ·))
)

i

∥
∥
∥
1

∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh∈Γ(π,h)

∑

i

∥
∥
∥

(

XÔh+1T̂h(ah)
)

i

∥
∥
∥
1
Ôh(oh | i)

∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh∈Γ(π,h)

∑

i

Ôh(oh | i)
∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣ ,

where the inequality is by triangle inequality, and the last identity follows from T̂h(ah) (when X = Ô
†
h+1)

and Ôh+1T̂h(ah) (when X = IO) having columns with ℓ1-norm equal to 1.

As π is deterministic, ah is unique given τh−1 and oh. Therefore,

∑

τh∈Γ(π,h)

∑

i

Ôh(oh | i)
∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh−1∈Γ(π,h−1)

∑

oh

∑

i

Ôh(oh | i)
∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh−1∈Γ(π,h−1)

∑

i

∑

oh

Ôh(oh | i)
∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh−1∈Γ(π,h−1)

∑

i

∣
∣
∣

(

Ô
†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣
∣
∣

=
∑

τh−1∈Γ(π,h−1)

∥
∥
∥Ô

†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
)∥
∥
∥
1
,

which completes the proof.

By applying Lemma 7 inductively, we can bound the error in belief states by the projection of errors in

operators on preceding belief states.

Lemma 8. Given a deterministic policy π and two sets of undercomplete POMDP parameters θ = (O,T, µ1)
and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, for all h ≥ 1, we have

∑

τh∈Γ(π,h)

∥
∥
∥b(τh; θ)− b(τh; θ̂)

∥
∥
∥
1

≤
√
S

α

h∑

j=1

∑

τj∈Γ(π,j)

∥
∥
∥

(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)
∥
∥
∥
1
+

√
S

α

∥
∥
∥b0(θ)− b0(θ̂)

∥
∥
∥
1
.
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Proof. Invoking Lemma 7 with X = Ô
†
j+1, we have

∑

τj∈Γ(π,j)
‖Ô†

j+1

(

b(τj; θ)− b(τj; θ̂)
)

‖1 ≤
∑

τj−1∈Γ(π,j−1)

∥
∥
∥Ô

†
j

(

b(τj−1; θ)− b(τj−1; θ̂)
)∥
∥
∥
1

+
∑

τj∈Γ(π,j)
‖Ô†

j+1

(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)‖1. (8)

Summing (8) over j = 1, . . . , h− 1, we obtain

∑

τh−1∈Γ(π,h−1)

‖Ô†
h

(

b(τh−1; θ)− b(τh−1; θ̂)
)

‖1 (9)

≤
h−1∑

j=1

∑

τj∈Γ(π,j)

∥
∥
∥Ô

†
j+1

(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)
∥
∥
∥
1
+
∥
∥
∥Ô

†
1

(

b0(θ)− b0(θ̂)
)∥
∥
∥
1
.

Again, invoking Lemma 7 with X = IO gives

∑

τh∈Γ(π,h)
‖b(τh; θ)− b(τh; θ̂)‖1 ≤

∑

τh−1∈Γ(π,h−1)

‖Ô†
h(b(τh−1; θ)− b(τh−1; θ̂))‖1

+
∑

τh∈Γ(π,h)
‖
(

Bh(ah, oh; θ̂)−Bh(ah, oh; θ)
)

b(τh−1; θ)‖1. (10)

Plugging (9) into (10), and using the fact that ‖Ô†
h‖1→1 ≤

√
S‖Ô†

h‖2 ≤
√
S
α

complete the proof.

The following lemma bounds the projection of any vector on belief states by its projection on the product

of the observation matrix and the transition matrix, reweighed by the visitation probability of states.

Lemma 9. For any deterministic policy π, fixed ah+1 ∈ A , u ∈ R
O, and h ≥ 0, we have

∑

oh+1∈O

∑

τh∈Γ(π,h)

∣
∣
∣u

⊤b([ah+1, oh+1, τh]; θ)
∣
∣
∣ ≤

S∑

s=1

|u⊤(Oh+2Th+1(ah+1))s|Pπ
θ (sh+1 = s).

Proof. By definition, for any [ah+1, oh+1, τh] ∈ A × O × Γ(π, h), we have

b([ah+1, oh+1, τh]; θ) = Oh+2Th+1(ah+1)P
π
θ (sh+1 = ·, [oh+1, τh]),

where P
π
θ (sh+1 = ·, [oh+1, τh]) is an s-dimensional vector, whose ith entry is equal to the probability of

observing [oh+1, τh] and reaching state i at step h+ 1 when executing policy π in POMDP(θ).
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Therefore,

∑

τh∈Γ(π,h)

∑

oh+1∈O

|u⊤b([ah+1, oh+1, τh]; θ)|

=
∑

τh∈Γ(π,h)

∑

oh+1∈O

|u⊤
Oh+2Th+1(ah+1)P

π
θ (sh+1 = ·, [oh+1, τh])|

≤
∑

τh∈Γ(π,h)

∑

oh+1∈O

S∑

s=1

|u⊤(Oh+2Th+1(ah+1))s|Pπ
θ (sh+1 = s, [oh+1, τh])

=

S∑

s=1

|u⊤(Oh+2Th+1(ah+1))s|
(

∑

τh∈Γ(π,h)

∑

oh+1∈O

P
π
θ (sh+1 = s, [oh+1, τh])

)

=

S∑

s=1

|u⊤(Oh+2Th+1(ah+1))s|Pπ
θ (sh+1 = s).

Combining Lemma 8 and Lemma 9, we obtain the target bound.

Lemma 10. Given a deterministic policy π and two sets of undercomplete POMDP parameters θ =
(O,T, µ1) and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, for all h ≥ 1, we have

∑

τh∈Γ(π,h)
‖b(τh; θ)− b(τh; θ̂)‖1

≤
√
S

α

∥
∥
∥b0(θ)− b0(θ̂)

∥
∥
∥
1
+

√
S

α

∑

(a,o)∈A ×O

∥
∥
∥

(

B1(a, o; θ̂)−B1(a, o; θ)
)

b0(θ)
∥
∥
∥
1

+

√
S

α

h∑

j=2

∑

(a,ã,o)∈A 2×O

S∑

s=1

∥
∥
∥

(

Bj(a, o; θ̂)−Bj(a, o; θ)
)

(OjTj−1(ã))s

∥
∥
∥
1
P
π
θ (sj−1 = s).

Proof. By Lemma 8,

∑

τh∈Γ(π,h)
‖b(τh; θ)− b(τh; θ̂)‖1

≤
√
S

α

h∑

j=2

∑

τj∈Γ(π,j)

∥
∥
∥

(

Bj(aj, oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)
∥
∥
∥
1

+

√
S

α

∑

τ1∈Γ(π,1)

∥
∥
∥

(

B1(a1, o1; θ̂)−B1(a1, o1; θ̂)
)

b0(θ)
∥
∥
∥
1
+

√
S

α

∥
∥
∥b0(θ)− b0(θ̂)

∥
∥
∥
1
. (11)
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Bounding the first term: note that Γ(π, j) ⊆ Γ(π, j − 2)× (O ×A )2, so we have

∑

τj∈Γ(π,j)
‖
(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)‖1

≤
∑

τj−2∈Γ(π,j−2)

∑

oj−1∈O

∑

aj−1∈A

∑

oj∈O

∑

aj∈A

‖
(

Bj(aj , oj; θ̂)−Bj(aj , oj ; θ)
)

b([aj−1, oj−1, τj−2]; θ)‖1

=
∑

(aj ,aj−1,oj)∈A 2×O

∑

τj−2∈Γ(π,j−2)

∑

oj−1∈O

‖
(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b([aj−1, oj−1, τj−2]; θ)‖1
︸ ︷︷ ︸

(⋄)

. (12)

We can bound (⋄) by Lemma 9 and obtain,

∑

τj∈Γ(π,j)
‖
(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

b(τj−1; θ)‖1

≤
∑

(aj ,aj−1,oj)∈A 2×O

S∑

s=1

‖
(

Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)

(OjTj−1(aj−1))s‖1Pπ
θ (sj−1 = s)

=
∑

(a,ã,o)∈A 2×O

S∑

s=1

‖
(

Bj(a, o; θ̂)−Bj(a, o; θ)
)

(OjTj−1(ã))s‖1Pπ
θ (sj−1 = s), (13)

where the identity only changes the notations (aj , aj−1, oj)→ (a, ã, o) to make the expression cleaner.

Bounding the second term: note that Γ(π, 1) ⊆ O ×A , we have

∑

τ1∈Γ(π,1)

∥
∥
∥

(

B1(a1, o1; θ)−B1(a1, o1; θ̂)
)

b0(θ)
∥
∥
∥
1

≤
∑

(a,o)∈A ×O

∥
∥
∥

(

B1(a, o; θ)−B1(a, o; θ̂)
)

b0(θ)
∥
∥
∥
1
. (14)

Plugging (13) and (14) into (11) completes the proof.

C.2 A hammer for studying confidence sets

In this subsection, we develop a martingale concentration result, which forms the basis of analyzing confi-

dence sets.

We start by giving the following basic fact about POMDP. The proof is just some basic algebraic calcu-

lation so we omit it here.

Fact 11. In POMDP(θ), suppose sh−1 is sampled from µh−1, fix ah−1 ≡ ã, and ah ≡ a. Then the joint

distribution of (oh+1, oh, oh−1) is

P(oh+1 = ·, oh = ·, oh−1 = ·) = (Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(µh−1)Th−1(ã)
⊤).
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By slicing the tensor, we can further obtain







P(oh−1 = ·) = Oh−1µh−1,

P(oh = ·, oh−1 = ·) = OhTh−1(ã)diag(µh−1)O
⊤
h−1,

P(oh+1 = ·, oh = o, oh−1 = ·) = Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µh−1)O
⊤
h−1.

A simple implication of Fact 11 is that if we execute policy π from step 1 to step h− 2, take ã and a at

step h− 1 and h respectively, then the joint distribution of (oh+1, oh, oh−1) is the same as above except for

replacing µh−1 with P
π
θ (sh−1 = ·).

Suppose we are given a set of sequential data {(o(t)h+1, o
(t)
h , o

(t)
h−1)}Nt=1 generated from POMDP(θ) in the

following way: at time t, execute policy πt from step 1 to step h−2, take action ã at step h−1, and action a

at step h respectively, and observe (o
(t)
h+1, o

(t)
h , o

(t)
h−1). Here, we allow the policy πt to be adversarial, in the

sense that πt can be chosen based on {(πi, o(i)h+1, o
(i)
h , o

(i)
h−1)}t−1

i=1. Define µadv
h−1 = 1

N

∑N
t=1 P

πt

θ (sh−1 = ·).
Based on Fact 11, we define the following probability vector, matrices and tensor,







Ph−1 = Oh−1µ
adv
h−1,

Ph,h−1 = OhTh−1(ã)diag(µ
adv
h−1)O

⊤
h−1,

Ph+1,h,h−1 = (Oh+1Th(a)) ⊗Oh ⊗ (Oh−1diag(µ
adv
h−1)Th−1(ã)

⊤)

Ph+1,o,h−1 = Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µ
adv
h−1)O

⊤
h−1, o ∈ O.

Accordingly, we define their empirical estimates as below







P̂h−1 =
1

N

N∑

t=1

e
o
(t)
h−1

,

P̂h,h−1 =
1

N

N∑

t=1

e
o
(t)
h

⊗ e
o
(t)
h−1

,

P̂h+1,h,h−1 =
1

N

N∑

t=1

e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

,

P̂h+1,o,h−1 =
1

N

N∑

t=1

e
o
(t)
h+1

⊗ e
o
(t)
h−1

1(o
(t)
h = o), o ∈ O.

Lemma 12. There exists an absolute constant c1, s.t. the following concentration bound holds with proba-

bility at least 1− δ

max

{

‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F , ‖P̂h,h−1 − Ph,h−1‖F ,

max
o∈O
‖P̂h+1,o,h−1 − Ph+1,o,h−1‖F , ‖P̂h−1 − Ph−1‖2

}

≤ c1

√

log(ON/δ)

N
.

Proof. We start with proving that with probability at least 1− δ/2,

‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F ≤ c1

√

log(ON/δ)

N
.
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Let Ft be the σ-algebra generated by
{

{πi}t+1
i=1, {(o

(i)
h+1, o

(i)
h , o

(i)
h−1)}ti=1

}

. (Ft) is a filtration. Define

Xt = e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

− (Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(P
πt

θ (sh−1 = ·))Th−1(ã)
⊤).

We have Xt ∈ Ft and E[Xt | Ft−1] = E[Xt | πt] = 0, where the second identity follows from Fact 11.

Moreover,

‖Xt‖F ≤ ‖Xt‖1 ≤ ‖eo(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

‖1+

‖(Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(P
πt

θ (sh−1 = ·))Th−1(ã)
⊤)‖1 = 2, (15)

where ‖ · ‖1 denotes the entry-wise ℓ1-norm of the tensor.

Now, we can bound ‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F by writing P̂h+1,h,h−1 − Ph+1,h,h−1 as the sum of a

sequence of tensor-valued martingale difference, vectorizing the tensors, and applying the standard vector-

valued martingale concentration inequality (e.g. see Corollary 7 in [17]):

‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F

=‖ 1
N

N∑

t=1

(
e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

−

(Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(P
πt

θ (sh−1 = ·))Th−1(ã)
⊤)
)
‖F

=‖ 1
N

N∑

t=1

Xt‖F ≤ O
(√

log(ON/δ)

N

)

,

with probability at least 1 − δ/2. We remark that when vectoring a tensor, its Frobenius norm will become

the ℓ2-norm the vector. So the upper bound of the norm of the vectorized martingales directly follows from

(15).

Similarly, we can show that with probability at least 1− δ/2,

‖P̂h,h−1 − Ph,h−1‖F ≤ O
(√

log(ON/δ)

N

)

and ‖P̂h−1 − Ph−1‖F ≤ O
(√

log(ON/δ)

N

)

.

Using the fact ‖P̂h+1,o,h−1−Ph+1,o,h−1‖F ≤ ‖P̂h+1,h,h−1−Ph+1,h,h−1‖F completes the whole proof.

C.3 Properties of confidence sets

For convenience of discussion, we divide the constraints in Θk into three categories as following

Type-0 constraint:

‖k · b0(θ̂)− nk‖2 ≤ βk}

Type-I constraint:

‖B1(a, o; θ̂)N
k
1(a, ã)−Mk

1(o, a, ã)‖F ≤ γk,

where Mk
1 and Nk

1 are actually equivalent to O-dimensional counting vectors because there is no observation

(or only a dummy observation) at step 0, which implies each of them has only one non-zero column. With

slight abuse of notation, we use Mk
1 and Nk

1 to denote their non-zero columns in the following proof.

21



Type-II constraint: for 2 ≤ h ≤ H − 1,

‖Bh(a, o; θ̂)N
k
h(a, ã)−Mk

h(o, a, ã)‖F ≤ γk

Recalling the definition of nk(θ), Nk
h(a, ã) and Mk

h(o, a, ã) and applying Lemma 12, we get the follow-

ing concentration results.

Corollary 13. Let θ⋆ = (T,O, µ1). By applying Lemma 12 directly, with probability at least 1 − δ, for all

k ∈ [K] and (o, a, ã) ∈ O ×A 2, we have







∥
∥
∥
∥

1

k
nk −O1µ1

∥
∥
∥
∥
2

≤ O
(√

ι

k

)

,

∥
∥
∥
∥

1

k
Nk

1(a, ã)−O1µ1

∥
∥
∥
∥
2

≤ O
(√

ι

k

)

,

∥
∥
∥
∥

1

k
Mk

1(o, a, ã)−
(

O2T1(ã)diag(µ1)O
⊤
1

)

o

∥
∥
∥
∥
2

≤ O
(√

ι

k

)

,

∥
∥
∥
∥
∥
∥
∥

1

k
Nk

h(a, ã)−OhTh−1(ã)diag(µ
k
h−1)O

⊤
h−1

︸ ︷︷ ︸

V

∥
∥
∥
∥
∥
∥
∥
F

≤ O
(√

ι

k

)

,

∥
∥
∥
∥
∥
∥
∥

1

k
Mk

h(o, a, ã)−Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µ
k
h−1)O

⊤
h−1

︸ ︷︷ ︸

W

∥
∥
∥
∥
∥
∥
∥
F

≤ O
(√

ι

k

)

,

where

ι = log(KAOH/δ) and µk
h−1 =

1

k

k∑

t=1

P
πt

θ⋆(sh−1 = ·) 2 ≤ h ≤ H − 1.

Note that for all k ∈ [K], µk
1 = µ1 independent of π1, . . . , πk.

Now, with Corollary 13, we can prove the true parameter θ⋆ always lies in the confidence sets for

k ∈ [K] with high probability.

Lemma 14. Denote by θ⋆ = (T,O, µ1) the the ground truth parameters of the POMDP. With probability at

least 1− δ, we have θ⋆ ∈ Θk for all k ∈ [K].

Proof. By the definition of b0(θ
⋆) and Bh(a, o; θ

⋆), we have

(∗)







b0(θ
⋆) = O1µ1,

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
= B1(ã, o; θ

⋆)O1µ1,

W = Bh(a, o; θ
⋆) ·V, h ≥ 2,

where W and V are shorthands defined in Corollary 13.

It’s easy to see (∗) and Corollary13 directly imply
∥
∥nk − b0(θ

⋆)
∥
∥
2
≤ O

(√
kι
)

and thus θ⋆ satisfies

Type-0 constraint. For other constraints, we have
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Type-I constraint:

‖Mk
1(o, a, ã)−B1(ã, o; θ

⋆)Nk
1(a, ã)‖2

≤‖Mk
1(o, a, ã)− k

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
‖2 + ‖B1(ã, o; θ

⋆)(kO1µ1 −Nk
1(a, ã))‖2

+ k‖
(

O2T1(ã)diag(µ1)O
⊤
1

)

o
−B1(ã, o; θ

⋆)O1µ1‖2

=‖Mk
1(o, a, ã)− k

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
‖2 + ‖B1(ã, o; θ

⋆)(kO1µ1 −Nk
1(a, ã))‖2

≤‖Mk
1(o, a, ã)− k

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
‖2 + ‖B1(ã, o; θ

⋆)‖2‖kO1µ1 −Nk
1(a, ã)‖2

≤O
(√

kSι

α

)

where the identity follows from (∗), and the last inequality follows from Corollary13 and

‖Bh(a, o; θ
⋆)‖2 = ‖Oh+1Th(a)diag(Oh(o|·))O†

h‖2

≤ 1

α
‖Oh+1Th(a)diag(Oh(o|·))‖2

≤
√
S

α
‖Oh+1Th(a)diag(Oh(o|·))‖1→1 ≤

√
S

α
.

Type-II constraint: similarly, for h ≥ 2, we have

‖Bh(a, o; θ
⋆)Nk

h(a, ã)−Mk
h(o, a, ã)‖F

≤k‖Bh(a, o; θ
⋆) ·V −W‖F + ‖Bh(a, o; θ

⋆)(Nk
h(a, ã)− kV)‖F + ‖kW −Mk

h(o, a, ã)‖F
=‖Bh(a, o; θ

⋆)(Nk
h(a, ã)− kV)‖F + ‖kW −Mk

h(o, a, ã)‖F
≤‖Bh(a, o; θ

⋆)‖2‖Nk
h(a, ã)− kV‖F + ‖kW −Mk

h(o, a, ã)‖F

≤O
(√

kSι

α

)

,

Therefore, we conclude that θ⋆ ∈ Θk for all k ∈ [K] with probability at least 1− δ.

Furthermore, with Corollary 13, we can prove the following bound for operator error.

Lemma 15. With probability at least 1 − δ, for all k ∈ [K], θ̂ = (Ô, T̂, µ̂1) ∈ Θk+1 and (o, a, ã, h) ∈
O ×A 2 × {2, . . . ,H − 1}, we have







∥
∥
∥b0(θ

⋆)− b0(θ̂)
∥
∥
∥
2
≤ O

(√
ι

k

)

,

∥
∥
∥

(

B1(ã, o; θ̂)−B1(ã, o; θ
⋆)
)

b0(θ
⋆)
∥
∥
∥
2
≤ O

(√

Sι

kα2

)

,

S∑

s=1

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

(OhTh−1(ã))s

∥
∥
∥
1

k∑

t=1

P
πt

θ⋆(sh−1 = s) ≤ O
(√

kS2Oι

α4

)

,

where ι = log(KAOH/δ).
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Proof. For readability, we copy the following set of identities from Lemma 14 here,

(∗)







b0(θ
⋆) = O1µ1,

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
= B1(ã, o; θ

⋆)O1µ1,

W = Bh(a, o; θ
⋆) ·V, h ≥ 2.

Type-0 closeness:

∥
∥
∥b0(θ

⋆)− b0(θ̂)
∥
∥
∥
2
≤
∥
∥
∥
∥

1

k
nk − b0(θ

⋆)

∥
∥
∥
∥
2

+

∥
∥
∥
∥

1

k
nk − b0(θ̂)

∥
∥
∥
∥
2

≤ O
(√

ι

k

)

,

where the last inequality follows from (∗), Corollary13 and θ̂ ∈ Θk+1.

Type-I closeness: similarly, we have
∥
∥
∥

(

B1(ã, o; θ̂)−B1(ã, o; θ
⋆)
)

b0(θ
⋆)
∥
∥
∥
2

≤
∥
∥
∥

(

O2T1(ã)diag(µ1)O
⊤
1

)

o
−B1(ã, o; θ

⋆)b0(θ
⋆)
∥
∥
∥
2

+ ‖
(

O2T1(ã)diag(µ1)O
⊤
1

)

o
−B1(ã, o; θ̂)b0(θ

⋆)‖2

=‖
(

O2T1(ã)diag(µ1)O
⊤
1

)

o
−B1(ã, o; θ̂)b0(θ

⋆)‖2

≤‖
(

O2T1(ã)diag(µ1)O
⊤
1

)

o
− 1

k
Mk

1(o, a, ã)‖2 +
1

k
‖Mk

1(o, a, ã)−B1(ã, o; θ̂)N
k
1(a, ã)‖2

+ ‖B1(ã, o; θ̂)

(
1

k
Nk

1(a, ã)− b0(θ
⋆)

)

‖2

≤‖
(

O2T1(ã)diag(µ1)O
⊤
1

)

o
− 1

k
Mk

1(o, a, ã)‖2 +
1

k
‖Mk

1(o, a, ã)−B1(ã, o; θ̂)N
k
1(a, ã)‖2

+ ‖B1(ã, o; θ̂)‖2‖
1

k
Nk

1(a, ã)−O1µ1‖2

≤O
(√

Sι

kα2

)

,

where the identity follows from (∗) and the last inequality follows from Corollary13 and θ̂ ∈ Θk+1.

Type-II closeness: we continue to use the same proof strategy, for h ≥ 2
∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

V

∥
∥
∥
F

≤‖W−Bh(a, o; θ
⋆)V‖F + ‖1

k
Mk

h(o, a, ã)−W‖F

+
1

k
‖Bh(a, o; θ̂)N

k
h(a, ã)−Mk

h(o, a, ã)‖F + ‖Bh(a, o; θ̂)

(

V − 1

k
Nk

h(a, ã)

)

‖F

=‖1
k
Mk

h(o, a, ã)−W‖F +
1

k
‖Bh(a, o; θ̂)N

k
h(a, ã)−Mk

h(o, a, ã)‖F

+ ‖Bh(a, o; θ̂)

(

V− 1

k
Nk

h(a, ã)

)

‖F

≤O
(√

Sι

kα2

)

, (16)
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where the identity follows from (∗) and the last inequality follows from Corollary13 and θ̂ ∈ Θk+1.

Recall V = OhTh−1(ã)diag(µ
k
h−1)O

⊤
h−1 and utilize Assumption 1,

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

V

∥
∥
∥
F

≥α
∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

OhTh−1(ã)diag(µ
k
h−1)

∥
∥
∥
F

≥ α√
SO

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

OhTh−1(ã)diag(µ
k
h−1)

∥
∥
∥
1

=
α

k
√
SO

S∑

s=1

∥
∥
∥

(

Bh(a, o; θ̂)−Bh(a, o; θ
⋆)
)

(OhTh−1(ã))s

∥
∥
∥
1

k∑

t=1

P
πt

θ⋆(sh−1 = s).

Plugging it back into (16) completes the whole proof.

C.4 Proof of Theorem 3

In order to utilize Lemma 15 to bound the operator error in Lemma 10, we need the following algebraic

transformation. Its proof is postponed to Appendix E.

Lemma 16. Let zk ∈ [0, Cz ] and wk ∈ [0, Cw] for k ∈ N. Define Sk =
∑k

j=1wj and S0 = 0. If

zkSk−1 ≤ CzCwC0

√
k for any k ∈ [K], we have

K∑

k=1

zkwk ≤ 2CzCw(C0 + 1)
√
K log(K).

Moreover, there exists some hard case where we have a almost matching lower bound O
(

CzCwC0

√
K
)

.

Now, we are ready to prove the main theorem based on Lemma 10, Lemma 15 and Lemma 16.

Theorem 3. For any ε ∈ (0,H], there exists Kmax = poly(H,S,A,O, α−1)/ε2 and an absolute constant

c1, such that for any POMDP that satisfies Assumption 1, if we set hyperparameters βk = c1
√

k log(KAOH),
γk =

√
Sβk/α, and K ≥ Kmax, then the output policy π̂ of Algorithm 1 will be ε-optimal with probability

at least 2/3.

Proof. There always exist an optimal deterministic policy π⋆ for the ground truth POMDP(θ⋆), i.e., V ⋆(θ⋆) =
V π⋆

(θ⋆). WLOG, we can always choose the greedy policy πk to be deterministic, i.e., the probability to

take any action given a history is either 0 or 1.

By Lemma 14, we have θ⋆ ∈ Θk for all k ∈ [K] with probability at least 1 − δ. Recall that (πk, θk) =
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argmaxπ,θ∈Θk
V π(θ), so with probability at least 1− δ, we have

K∑

k=1

(

V π⋆

(θ⋆)− V πk(θ⋆)
)

≤
K∑

k=1

(V πk(θk)− V πk(θ⋆))

≤H
K∑

k=1

∑

[oH ,τH−1]∈O×Γ(πk,H−1)

‖Pπk

θ⋆ ([oH , τH−1])− P
πk

θk
([oH , τH−1])‖1

=H

K∑

k=1

∑

τH−1∈Γ(πk,H−1)

‖b(τH−1; θ
⋆)− b(τH−1; θk)‖1, (17)

where the identity follows from Fact 18.

Applying Lemma 10, we have

∑

τH−1∈Γ(πk,H−1)

‖b(τH−1; θ
⋆)− b(τH−1; θk)‖1

≤
√
S

α
‖b0(θ

⋆)− b0(θk)‖1 +
√
S

α

∑

(a,o)∈A ×O

‖(B1(a, o; θk)−B1(a, o; θ
⋆))b0(θ

⋆)‖1
︸ ︷︷ ︸

Jk

+

√
S

α

H−1∑

h=2

∑

(a,ã,o)∈A 2×O

S∑

s=1

‖(Bh(a, o; θk)−Bh(a, o; θ
⋆)) (OhTh−1(ã))s‖1 P

πk

θ⋆ (sh−1 = s). (18)

We can bound the first two terms by Lemma 15, and obtain that with probability at least 1− δ,

H

K∑

k=1

Jk ≤ O
(
HSAO

α2

√
Kι

)

. (19)

Plugging (18) and (19) into (17), we obtain

K∑

k=1

(

V π⋆

(θ⋆)− V πk(θ⋆)
)

≤ O
(
HSAO

α2

√
Kι

)

+

H2S1.5A2O

α
max

s,o,a,ã,h

K∑

k=1

‖(Bh(a, o; θk)−Bh(a, o; θ
⋆)) (OhTh−1(ã))s‖1 P

πk

θ⋆ (sh−1 = s). (20)

It remains to bound the second term.

By Lemma 15, with probability at least 1 − δ, for all k ∈ [K], θk ∈ Θk and (s, o, a, ã, h) ∈ S × O ×
A 2 × {2, . . . ,H − 1}, we have

‖(Bh(a, o; θk)−Bh(a, o; θ
⋆)) (OhTh−1(ã))s‖1

︸ ︷︷ ︸
zk

k−1∑

t=1

P
πt

θ⋆(sh−1 = s)
︸ ︷︷ ︸

wt

≤ O
(√

kS2Oι

α4

)

. (21)
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By simple calculation, we have zk ≤
√
S/α. Invoking Lemma 16 with (21), we obtain

K∑

k=1

wkzk ≤ O
(√

S3Oι

α3

√
K log(K)

)

. (22)

Plugging (22) back into (20) gives

K∑

k=1

(

V π⋆

(θ⋆)− V πk(θ⋆)
)

≤ O
(
H2S3A2O1.5√ι

α4

√
K log(K)

)

. (23)

Finally, choosing

Kmax = O
(
H4S6A4O3 log(HSAO/ε)

α8ε2

)

,

and outputting a policy from {π1, . . . , πK} uniformly at random complete the proof.

D Learning POMDPs with Deterministic Transition

In this section, we introduce a computationally and statistically efficient algorithm for POMDPs with deter-

ministic transition. A sketched proof is provided.

We comment that some previous works have studied POMDPs with deterministic transitions or deter-

ministic emission process assuming the model is known (e.g. [4, 5, 6]); their results mainly focus on the

planning aspect. In contrast, we assume unknown models which requires to learn the transition and emission

process first. It is also worth mentioning that the (quasi)-deterministic POMDPs defined in these works are

not exactly the same as ours. For example, the deterministic POMDPs in [6] refer to those with stochas-

tic initial state but deterministic emission process, while we assume deterministic initial state but stochastic

emission process. Therefore, their computational hardness results do not conflict with the efficient algorithm

in this section.

Algorithm 2 Learning POMDPs with Deterministic Transition

1: initialize N = C log(HSA/p)/(min{ǫ/(
√
OH), ξ})2, nh = 1(h = 1) for all h ∈ [H].

2: for h = 1, . . . ,H − 1 do

3: for (s, a) ∈ [nh]×A do

4: Reset z ← 0O×1 and t← nh+1 + 1
5: for i ∈ [N ] do

6: execute policy πh(s) from step 1 to step h− 1, take action a at hth step and observe oh+17: z ← z + 1
N
eoh+1

8: for s′ ∈ [nh+1] do

9: if ‖φh+1,s′ − z‖2 ≤ 0.5ξ then

10: t← s′

11: if t = nh+1 + 1 then

12: nh+1 ← nh+1 + 1
13: φh+1,nh+1

← z and πh+1(nh+1)← a ◦ πh(s)
14: Set the sth column of T̂h,a to be et

15: output µ̂0 = e1 and
{

nh, {T̂h,a}a∈A and {φh,i}i∈[nh] : h ∈ [H]
}
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Theorem 4. For any p ∈ (0, 1], there exists an algorithm such that for any deterministic transition POMDP

satisfying Assumption 2, within O
(

H2SA log(HSA/p)/(min{ε/(
√
OH), ξ})2

)

samples and computa-

tions, the output policy of the algorithm is ε-optimal with probability at least 1− p.

Proof. The algorithm works by inductively finding all the states we can reach at each step, utilizing the

property of deterministic transition and good separation between different observation vectors. We sketch a

proof based on induction below.

We say a state s is h-step reachable if there exists a policy π s.t. Pπ(sh = s) = 1. In our algorithm, we

use nh to denote the number of h-step reachable states. All the policies mentioned below is a sequence of

fixed actions (independent of observations).

Suppose at step h, there are nh h-step reachable states and we can reach the sth one of them at the hth

step by executing a known policy πh(s). Note that for every state s′ that is (h + 1)-step reachable, there

must exist some state s and action a s.t. s is h-step reachable and Th(s
′ | s, a) = 1. Therefore, based on

our induction assumption, we can reach all the (h + 1)-step reachable states by executing all a ◦ πh(s) for

(a, s) ∈ A × [nh].

Now the problem is how to tell if we reach the same state by executing two different a ◦ πh(s)’s. The

solution is to look at the distribution of oh+1. Because the POMDP has deterministic transition, we always

reach the same state when executing the same a ◦ πh(s) and hence the distribution of oh+1 is exactly the

distribution of observation corresponding to that state. By Hoeffding’s inequality, for each fixed a◦πh(s), we

can estimate the distribution of oh+1 with ℓ2-error smaller than ξ/8 with high probability using N ≥ Ω̃(1/ξ2)
samples. Since the observation distributions of two different states have ℓ2-separation no smaller than ξ, we

can tell if two different a◦πh(s)’s reach the same state by looking at the distance between their distributions

of oh+1. For those policies reaching the same state, we only need to keep one of them, so there are at most

S policies kept (nh+1 ≤ S).

By repeating the argument inductively from h = 1 to h = H , we can recover the exact transition

dynamics Th(· | s, a) and get an high-accuary estimate of Oh(· | s) for every h-step reachable state s and

all (h, a) ∈ [H] × A up to permutation of states. Since the POMDP has deterministic transition, we can

easily find the optimal policy of the estimated model by dynamic programming.

The ǫ-optimality simply follows from the fact that when N ≥ Ω̃(H2O/ǫ2), we have the estimated

distribution of observation for each state being O(ǫ/H) accurate in ℓ1-distance for all reachable states. This

implies that the optimal policy of the estimated model is at most O(ǫ/H) × H = O(ǫ) suboptimal. The

overall sample complexity follows from our requirement N ≥ max{Ω̃(H2O/ǫ2), Ω̃(1/ξ2)}, and the fact

we need to run N episodes for each h ∈ [H], s ∈ S , a ∈ A .

E Auxiliary Results

E.1 Derivation of equation (2)

When conditioning on a fixed action sequence {aH−1, . . . , a1}, a POMDP will reduce to a non-stationary

HMM, whose transition matrix and observation matrix at hth step are Th(ah) and Oh, respectively. So

P(oH , . . . , o1|aH−1, . . . , a1) is equal to the probability of observing {oH , . . . , o1} in this particular HMM.

Using the basic properties of HMMs, we can easily express P(oH , . . . , o1|aH−1, . . . , a1) in terms of the
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transition and observation matrices

OH(oH |·) · [TH−1(aH−1)diag(OH−1(oH−1|·))] · · · [T1(a1)diag(O1(o1|·))] · µ1.

Recall the definition of operators

Bh(a, o) = Oh+1Th(a)diag(Oh(o|·))O†
h, b0 = O1µ1,

and O
†
hOh = IS , we conclude that

P(oH , . . . , o1|aH−1, . . . , a1) = e⊤oH ·BH−1(aH−1, oH−1) · · ·B1(a1, o1) · b0.

E.2 Derivation of equation (6)

Note that π is a deterministic policy and Γ(π,H) is a set of all the observation and action sequences of

length H that could occur under policy π, i.e., for any τH = (oH , . . . , a1, o1) ∈ Γ(π,H), we have

π(aH−1 . . . , a1 | oH , . . . , o1) = 1, and π(a′H−1 . . . , a
′
1 | oH , . . . , o1) = 0 for any action sequence

(a′H−1 . . . , a
′
1) 6= (aH−1 . . . , a1). Therefore, for τH ∈ Γ(π,H), we have:

P
π
θ (oH , . . . , o1) =

∑

a′
H−1∈A

· · ·
∑

a′1∈A

P
π
θ (oH , a′H−1, . . . , a

′
1, o1)

=P
π
θ (oH , aH−1, . . . , a1, o1)

=

[
H−1∏

h=1

π(ah | oh, ah−1, . . . , a1, o1)

]

·
[

H∏

h=1

Pθ(oh | ah−1, oh−1 . . . , a1, o1)

]

=

H∏

h=1

Pθ(oh | ah−1, oh−1, . . . , a1, o1)

=Pθ(oH , . . . , o1|aH−1, . . . , a1).

E.3 Boosting the success probability

We can run Algorithm 1 independently for n = O(log(1/δ)) times and obtain n policies. Each policy is

independent of others and is ε-optimal with probability at least 2/3. So with probability at least 1 − δ/2,

at least one of them will be ε-optimal. In order to evaluate their performance, it suffices to run each policy

for O(log(n/δ)H2/ε2) episodes and use the empirical average of the cumulative reward as an estimate. By

standard concentration argument, with probability at least 1 − δ/2, the estimation error for each policy is

smaller than ε. Therefore, if we pick the policy with the best empirical performance, then with probability

at least 1 − δ, it is 3ε-optimal. Rescaling ε gives the desired accuracy. It is direct to see that the boosting

procedure will only incur an additional polylog(1/δ) factor in the final sample complexity, and thus will not

hurt the optimal dependence on ε.

E.4 Basic facts about POMDPs and the operators

In this section, we provide some useful facts about POMDPs. Since their proofs are quite straightforward,

we omit them here.
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The following fact gives two linear equations the operators always satisfy. Its proof simply follows from

the definition of the operators and Fact 11.

Fact 17. In the same setting as Fact 11, suppose Assumption 1 holds, then we have

{

P(oh = ·, oh−1 = ·)eo = Bh(ã, o; θ)P(oh−1 = ·),
P(oh+1 = ·, oh = o, oh−1 = ·) = Bh(a, o; θ)P(oh = ·, oh−1 = ·).

The following fact relates (unnormalized) belief states to distributions of observable sequences. Its proof

follows from simple computation using conditional probability formula and O
†
hOh = IS .

Fact 18. For any POMDP(θ) satisfying Assumption 1, deterministic policy π and [oh, τh−1] ∈ O ×
Γ(π, h− 1), we have

e⊤ohb(τh−1; θ) = P
π
θ ([oh, τh−1]),

where P
π
θ ([oh, τh−1]) is the probability of observing [oh, τh−1] when executing policy π in POMDP(θ).

E.5 Proof of Lemma 16

Proof. WLOG, assume Cz = Cw = 1. Let n = min{k ∈ [K] : Sk ≥ 1}. We have

K∑

k=1

zkwk =

n∑

k=1

zkwk +

K∑

k=n+1

zkwk ≤
n∑

k=1

wk +

K∑

k=n+1

zkwk

=Sn +

K∑

k=n+1

zkwk

≤2 +
K∑

k=n+1

zkwk.

It remains to bound the second term. Using the condition that zkSk−1 ≤ C0

√
k for all k ∈ [K], we have

zk ≤ C0

√
k

Sk−1
for all k ∈ [K] and i ∈ [m]. Therefore,

K∑

k=n+1

zkwk ≤
K∑

k=n+1

C0

√
k

wk

Sk−1

≤C0

√
K

K∑

k=n+1

wk

Sk−1

(a)

≤2C0

√
K

K∑

k=n+1

log(
Sk

Sk−1
)

=2C0

√
K log(

SK

Sn

) ≤ 2C0

√
K log(K),

where (a) follows from x ≤ 2 log(x+ 1) for x ∈ [0, 1].
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