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Abstract

There is growing body of learning problems for which it is natural to organize the parameters into

a matrix. As a result, it becomes easy to impose sophisticated prior knowledge by appropriately

regularizing the parameters under some matrix norm. This work describes and analyzes a system-

atic method for constructing such matrix-based regularization techniques. In particular, we focus on

how the underlying statistical properties of a given problem can help us decide which regularization

function is appropriate.

Our methodology is based on a known duality phenomenon: a function is strongly convex with

respect to some norm if and only if its conjugate function is strongly smooth with respect to the

dual norm. This result has already been found to be a key component in deriving and analyzing

several learning algorithms. We demonstrate the potential of this framework by deriving novel

generalization and regret bounds for multi-task learning, multi-class learning, and multiple kernel

learning.

Keywords: regularization, strong convexity, regret bounds, generalization bounds, multi-task

learning, multi-class learning, multiple kernel learning

1. Introduction

As we tackle more challenging learning problems, there is an increasing need for algorithms that

efficiently impose more sophisticated forms of prior knowledge. Examples include: the group

Lasso problem (for “shared” feature selection across problems), multiple kernel learning, multi-

class prediction, and multi-task learning. A central question here is to understand the performance

of such algorithms in terms of the attendant complexity restrictions imposed by the algorithm. Such

analyses often illuminate the nature in which our prior knowledge is being imposed.

The predominant modern machine learning method for imposing complexity restrictions is

through regularizing a vector of parameters. Much work has gone into understanding the relation-

ship between the nature of the regularization and the implicit prior knowledge imposed, particular
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for the case of regularization with ℓ2 and ℓ1 norms (where the former is more tailored to rotational

invariance and margins, while the latter is more suited to sparsity—see Ng, 2004). When dealing

with more complex problems, we need systematic tools for designing more complicated regular-

ization schemes. This work examines regularization based on group norms and spectral norms of

matrices. We analyze the performance of such regularization methods and provide general hints for

choosing a regularization function based on the underlying statistical properties of a given problem.

In particular, we use a recently developed methodology, based on the notion of strong con-

vexity, for designing and analyzing the regret or generalization ability of a wide range of learning

algorithms (see, e.g., Shalev-Shwartz, 2007 and Kakade et al., 2008). In fact, most of our efficient

algorithms (both in the batch and online settings) impose some complexity control via the use of

some strictly convex penalty function either explicitly via a regularizer or implicitly in the design

of an online update rule. Central to understanding these algorithms is the manner in which these

penalty functions are strictly convex, that is, the behavior of the “gap” by which these convex func-

tions lie above their tangent planes, which is strictly positive for strictly convex functions. Here,

the notion of strong convexity provides one means to characterize this gap in terms of some general

norm rather than just the standard Euclidean norm.

The importance of strong convexity can be understood using the duality between strong con-

vexity and strong smoothness. Strong smoothness measures how well a function is approximated

at some point by its linearization obtained from a first-order Taylor expansion. Linear functions

are easy to manipulate (e.g., because of the linearity of expectation). Hence, if a function is suf-

ficiently smooth we can more easily control its behavior. We further distill the analysis given by

Shalev-Shwartz (2007) and Kakade et al. (2008): based on the strong-convexity/smoothness duality,

we derive a key inequality which seamlessly enables us to design and analyze a family of learning

algorithms.

Our focus in this work is on learning with matrices. We characterize a number of matrix based

regularization functions, of recent interest, as being strongly convex functions. This immediately

allows us to derive learning algorithms by relying on the family of learning algorithms mentioned

previously. Specifying the general performance bounds for the specific matrix based regularization

method, we are able to systematically decide which regularization function is more appropriate

based on underlying statistical properties of a given problem.

1.1 Our Contributions

This paper has a two-fold aim. First, we want to provide a unified framework for obtaining regret

and generalization error bounds for algorithms based on strongly convex regularizers. We hope that

it lets us view a large amount of previous work in this area from a unified perspective. Whether we

have succeeded in our attempt or not is for the reader to judge. Second, we want to demonstrate that

the proposed framework is also capable to generating some novel results.

Contributions towards the first aim include the following.

• We show how the framework based on strong convexity/strong smoothness duality (see Shalev-

Shwartz, 2007; Kakade et al., 2008) provides a methodology for analyzing matrix based learn-

ing methods, which are of much recent interest. These results reinforce the usefulness of this

framework in providing both learning algorithms, and their associated complexity analysis.

For this reason, we further distill the analysis given by Shalev-Shwartz (2007) and Kakade
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et al. (2008). We emphasize a key inequality which immediately enables us to design and

analyze a family of learning algorithms.

• We provide template algorithms (both in the online and batch settings) for a number of ma-

chine learning problems of recent interest, which use matrix parameters. In particular, we

provide a simple derivation of generalization/mistake bounds for: (i) online and batch multi-

task learning using group or spectral norms, (ii) online multi-class categorization using group

or spectral norms, and (iii) multiple kernel learning.

For the expert reader, who may want to jump directly to novel results, we summarize the new

results below.

• We generalize recent results of Juditsky and Nemirovski (2008) to obtain a general result on

the strong convexity/strong smoothness of certain group norms (Theorem 13).

• For the case of multi-class learning, we describe and analyze a new “group perceptron” al-

gorithm (Algorithm 3) and show that with a shared structure between classes, this algorithm

can significantly outperform previously proposed multi-class perceptron algorithms (Corol-

lary 24).

• Our unified analysis simplifies previous analyses of recently proposed algorithms. For ex-

ample, the generality of this framework allows us to simplify the proofs of previously pro-

posed regret bounds for online multi-task learning (e.g., Cavallanti et al., 2008; Agarwal et al.,

2008). Moreover, our multi-task guarantees (Corollaries 20 and 22) are valid for “heteroge-

nous” tasks also: one task might be a regression task using squared loss, another might be

a classification task using logistic loss and yet another task might be using hinge loss for

classification.

• Bounds that follow immediately from our analysis are sometimes much sharper than previous

results. For instance, Theorem 25 improves upon the bounds for multiple kernel learning

given by Lanckriet et al. (2004) and Srebro and Ben-David (2006).

1.2 Related Work

We first discuss related work on learning with matrix parameters and then discuss the use of strong

convexity in learning.

1.2.1 MATRIX LEARNING

This is growing body of work studying learning problems in which the parameters can be orga-

nized as matrices. Several examples are multi-class categorization (Crammer and Singer, 2000),

multi-task and multi-view learning (Cavallanti et al., 2008; Agarwal et al., 2008), and online PCA

(Warmuth and Kuzmin, 2006). It was also studied under the framework of group Lasso (Yuan and

Lin, 2006; Obozinski et al., 2010; Bach, 2008).

In the context of learning vectors (rather than matrices), the study of the relative performance

of different regularization techniques based on properties of a given task dates back to Littlestone

(1988) and Kivinen and Warmuth (1997). In the context of batch learning, it was studied by several

authors (e.g., see Ng, 2004).

1867



KAKADE, SHALEV-SHWARTZ AND TEWARI

We also note that much of the work on multi-task learning for regression is on union support

recovery—a setting where the generative model specifies a certain set of relevant features (over all

the tasks), and the analysis here focuses on the conditions and sample sizes under which the union

of the relevant features can be correctly identified (e.g., Obozinski et al., 2010; Lounici et al., 2009).

Essentially, this is a generalization of the issue of identifying the relevant feature set in the standard

single task regression setting, under ℓ1-regularized regression. In contrast, our work focuses on the

agnostic setting of just understanding the sample size needed to obtain a given error rate (rather

than identifying the relevant features themselves). The use of interesting matrix norms like group

norms and Schatten norms in the context of multi-task learning appears in the work of Argyriou

et al. (2008).

We also discuss related work on kernel learning in Section 6. Our analysis here uses the equiv-

alence between kernel learning and group Lasso (as noted by Bach, 2008).

1.2.2 STRONG CONVEXITY/STRONG SMOOTHNESS

The notion of strong convexity takes its roots in optimization. Zalinescu (2002) attributes it to a

paper of Polyak in the 1960s. Relatively recently, its use in machine learning has been two fold: in

deriving regret bounds for online algorithms and generalization bounds in batch settings.

The duality of strong convexity and strong smoothness was first used by Shalev-Shwartz and

Singer (2006) and Shalev-Shwartz (2007) in the context of deriving low regret online algorithms.

Here, once we choose a particular strongly convex penalty function, we immediately have a family

of algorithms along with a regret bound for these algorithms that is in terms of a certain strong

convexity parameter. A variety of algorithms (and regret bounds) can be seen as special cases.

A similar technique, in which the Hessian is directly bounded, is described by Grove et al.

(2001) and Shalev-Shwartz and Singer (2007). Another related approach involved bounding a Breg-

man divergence (Kivinen and Warmuth, 1997, 2001; Gentile, 2003) (see Cesa-Bianchi and Lugosi,

2006 for a detailed survey). The Bregman approach also implicitly relies on exploiting the strong

convexity of the underlying Bregman function. Two canonical functions here are: 1
2
‖ · ‖2

2, which is

strongly convex w.r.t. ℓ2 norm, and negative entropy, which is strongly convex w.r.t. ℓ1 norm. These

lead to additive and multiplicative updates respectively. Another interesting application of the very

same duality is for deriving and analyzing boosting algorithms (Shalev-Shwartz and Singer, 2008).

More recently, Kakade et al. (2008) showed how to use the very same duality for bounding the

Rademacher complexity of classes of linear predictors. That the Rademacher complexity is closely

related to Fenchel duality was shown in Meir and Zhang (2003), and the work by Kakade et al.

(2008) made the further connection to strong convexity. Again, under this characterization, a num-

ber of generalization and margin bounds (for methods which use linear prediction) are immediate

corollaries, as one only needs to specify the strong convexity parameter from which these bounds

easily follow (see Kakade et al., 2008 for details).

The concept of strong smoothness (essentially a second order upper bound on a function) has

also been in play in a different literature: the analysis of the concentration of martingales in smooth

Banach spaces (Pinelis, 1994; Pisier, 1975). This body of work seeks to understand the concen-

tration properties of a random variable ‖Xt‖, where Xt is a (vector valued) martingale and ‖ · ‖ is a

smooth norm, say an Lp-norm.

Recently, Juditsky and Nemirovski (2008) used the fact that a norm is strongly convex if and

only if its conjugate is strongly smooth. This duality was useful in deriving concentration properties
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of a random variable ‖M‖, where now M is a random matrix. The norms considered here were the

(Schatten) Lp-matrix norms and certain “block” composed norms (such as the ‖ · ‖2,q norm).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we describe a general family of learning

algorithms. In particular, after presenting the duality of strong-convexity/strong-smoothness, we

isolate an important inequality (Corollary 4) and show that this inequality alone seamlessly yields

regret bounds in the online learning model and Rademacher bounds (that leads to generalization

bounds in the batch learning model). We further highlight the importance of strong convexity to

matrix learning applications by drawing attention to families of strongly convex functions over

matrices. Next, in Section 3 we show how the obtained bounds can be used for systematically

choosing an adequate prior knowledge (i.e., regularization) based on properties of the given task.

We then turn to describe the applicability of our approach to more complex prediction problems.

In particular, we study multi-task learning (Section 4), multi-class categorization (Section 5), and

kernel learning (Section 6). Naturally, many of the algorithms we derive have been proposed before.

Nevertheless, our unified analysis enables us to simplify previous analyzes, understand the merits

and pitfalls of different schemes, and even derive new algorithms/analyses.

2. Preliminaries and Techniques

In this section we describe the necessary background. Most of the results below are not new and

are based on results by Shalev-Shwartz (2007), Kakade et al. (2008), and Juditsky and Nemirovski

(2008). Nevertheless, we believe that the presentation given here is simpler and slightly more gen-

eral.

Our results are based on basic notions from convex analysis and matrix computation. The reader

not familiar with some of the objects described below may find short explanations in Appendix A.

2.1 Notation

We consider convex functions f : X →R∪{∞}, where X is a Euclidean vector space equipped with

an inner product 〈·, ·〉. We denote R
∗ = R∪{∞}. The subdifferential of f at x ∈ X is denoted by

∂ f (x). The Fenchel conjugate of f is denoted by f ⋆. Given a norm ‖ ·‖, its dual norm is denoted by

‖ · ‖⋆. We say that a convex function f is V -Lipschitz w.r.t. a norm ‖ · ‖ if for all x,x′ ∈ X we have

| f (x)− f (x′)| ≤V‖x− x′‖. Of particular interest are p-norms, ‖x‖p = (∑i |xi|p)1/p.

When dealing with matrices, we consider the vector space X = R
m×n of real matrices of size

m× n and the vector space X = S
n of symmetric matrices of size n× n, both equipped with the

inner product, 〈X,Y〉 := Tr(X⊤Y). Given a matrix X, the vector σ(X) is the vector that contains

the singular values of X in a non-increasing order. For X ∈ S
n, the vector λ(X) is the vector that

contains the eigenvalues of X arranged in non-increasing order.

2.2 Strong Convexity–Strong Smoothness Duality

Recall that the domain of f : X → R
∗ is {x : f (x) < ∞} (allowing f to take infinite values is the

effective way to restrict its domain to a proper subset of X ). We first define strong convexity.
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Definition 1 A function f : X → R
∗ is β-strongly convex w.r.t. a norm ‖ · ‖ if for all x,y in the

relative interior of the domain of f and α ∈ (0,1) we have

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− 1
2
βα(1−α)‖x− y‖2.

We now define strong smoothness. Note that a strongly smooth function f is always finite.

Definition 2 A function f : X → R is β-strongly smooth w.r.t. a norm ‖ · ‖ if f is everywhere

differentiable and if for all x,y we have

f (x+ y)≤ f (x)+ 〈∇ f (x),y〉+ 1
2
β‖y‖2.

The following theorem states that strong convexity and strong smoothness are dual properties.

Recall that the biconjugate f ⋆⋆ equals f if and only if f is closed and convex.

Theorem 3 (Strong Convexity/Strong Smoothness Duality) Assume that f is a closed and convex

function. Then f is β-strongly convex w.r.t. a norm ‖ · ‖ if and only if f ⋆ is 1
β -strongly smooth w.r.t.

the dual norm ‖ · ‖⋆.

Subtly, note that while the domain of a strongly convex function f may be a proper subset of X

(important for a number of settings), its conjugate f ⋆ always has a domain which is X (since if f ⋆

is strongly smooth then it is finite and everywhere differentiable). The above theorem can be found,

for instance, in Zalinescu (2002) (see Corollary 3.5.11 on p. 217 and Remark 3.5.3 on p. 218). In

the machine learning literature, a proof of one direction (strong convexity ⇒ strong smoothness)

can be found in Shalev-Shwartz (2007). We could not find a proof of the reverse implication in a

place easily accessible to machine learning researchers. So, a self-contained proof is provided in

the appendix.

The following direct corollary of Theorem 3 is central in proving both regret and generalization

bounds.

Corollary 4 If f is β strongly convex w.r.t. ‖ · ‖ and f ⋆(0) = 0, then, denoting the partial sum

∑ j≤i v j by v1:i, we have, for any sequence v1, . . . ,vn and for any u,

n

∑
i=1

〈vi,u〉− f (u)≤ f ⋆(v1:n)≤
n

∑
i=1

〈∇ f ⋆(v1:i−1),vi〉+
1

2β

n

∑
i=1

‖vi‖2
⋆ .

Proof The first inequality is Fenchel-Young and the second follows from an easy induction and the

definition of smoothness.

2.3 Implications of Strong-convexity / Strong-smoothness Duality

We consider two well-known learning models.

• Online convex optimization: Let W be a convex set. Online convex optimization is a two

player repeated game. On round t of the game, the learner (first player) should choose wt ∈
W and the environment (second player) responds with a convex function over W , that is,

lt : W → R. The goal of the learner is to minimize its regret defined as:

1

n

n

∑
t=1

lt(wt)− min
w∈W

1

n

n

∑
t=1

lt(w) .
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• Batch learning of linear predictors: Let D be a distribution over X ×Y which is unknown.

The goal is to learn a prediction rule from X to Y . The prediction rule we use is based on

a linear mapping x 7→ 〈w,x〉, and the quality of the prediction is assessed by a loss function

l(〈w,x〉 ,y). Our primary goal is to find w that has low risk (a.k.a. generalization error),

defined as L(w) = E[l(〈w,x〉 ,y)], where expectation is with respect to D . To do so, we can

sample n i.i.d. examples from D and observe the empirical risk, L̂(w) = 1
n ∑n

i=1 l(〈w,xi〉 ,yi).
The goal of the learner is to find ŵ with a low excess risk defined as:

L(ŵ)− min
w∈W

L(w) ,

where W is a set of vectors that forms the comparison class.

We now seamlessly provide learning guarantees for both models based on Corollary 4. We start

with the online convex optimization model.

2.3.1 REGRET BOUND FOR ONLINE CONVEX OPTIMIZATION

Algorithm 1 provides one common algorithm (online mirror descent) which achieves the following

regret bound. It is one of a family of algorithms that enjoy the same regret bound (see Shalev-

Shwartz, 2007). Note that successfully implementing the algorithm requires the ability to efficiently

compute the subgradient ∂lt of the loss function and the gradient mapping ∇ f ⋆.

Theorem 5 (Regret) Suppose Algorithm 1 is used with a function f that is β-strongly convex w.r.t.

a norm ‖ · ‖ on W and that f ⋆(0) = 0. Suppose the loss functions lt are convex and V -Lipschitz

w.r.t. the dual norm ‖ · ‖⋆. Then, the algorithm run with any positive η enjoys the regret bound,

T

∑
t=1

lt(wt)−min
u∈W

T

∑
t=1

lt(u)≤
maxu∈W f (u)

η
+

ηV 2T

2β
.

Proof Apply Corollary 4 to the sequence −ηv1, . . . ,−ηvT to get, for all u,

−η
T

∑
t=1

〈vt ,u〉− f (u)≤−η
T

∑
t=1

〈vt ,wt〉+
1

2β

T

∑
t=1

‖ηvt‖2
⋆ .

Using the fact that lt is V -Lipschitz, we get ‖vt‖⋆ ≤ V . Plugging this into the inequality above and

rearranging gives, ∑T
t=1 〈vt ,wt −u〉 ≤ f (u)

η + ηV 2T
2β . By convexity of lt , lt(wt)− lt(u) ≤ 〈vt ,wt−u〉.

Therefore, ∑T
t=1 lt(wt)−∑T

t=1 lt(u) ≤ f (u)
η + ηV 2T

2β . Since the above holds for all u ∈W the result

follows.

Remark 6 The result above assumes strong convexity and derives an O(
√

T ) rate (once we opti-

mize over η). It seems that strong convexity is required to get such rates in general. In particular,

when the “weight vector” comes from an infinite dimensional normed space with norm ‖ · ‖ and

the functions lt are 1-Lipschitz w.r.t. the dual norm ‖ · ‖⋆, a necessary and sufficient condition for a

O(
√

T ) regret rate is that the Martingale type of the dual space is 2. Moreover, this last condition is

equivalent to the existence of a strongly convex function in the original normed space. For details,

we refer the interested reader to the work of Sridharan and Tewari (2010).
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Algorithm 1 Online Mirror Descent

w1← ∇ f ⋆(0)
for t = 1 to T do

Play wt ∈W

Receive lt and pick vt ∈ ∂lt(wt)
wt+1← ∇ f ⋆ (−η∑t

s=1 vt)
end for

2.3.2 GENERALIZATION BOUND FOR THE BATCH MODEL VIA RADEMACHER COMPLEXITY

Let T = (x1, . . . ,xn) ∈ X n be the examples in a training set obtained by sampling i.i.d. examples

from D . For a class of real valued functions F ⊆R
X , define its Rademacher complexity on T to be

RT (F ) := E

[
sup
f∈F

1

n

n

∑
i=1

εi f (xi)

]
.

Here, the expectation is over εi’s, which are i.i.d. Rademacher random variables, that is, P(εi =
−1) = P(ε1 =+1) = 1

2
. It is well known that bounds on Rademacher complexity of a class imme-

diately yield generalization bounds for classifiers picked from that class (assuming the loss function

is Lipschitz). Recently, Kakade et al. (2008) proved Rademacher complexity bounds for classes

consisting of linear predictors using strong convexity arguments. We now give a quick proof of

their main result using Corollary 4. This proof is essentially the same as their original proof but

highlights the importance of Corollary 4.

Theorem 7 (Generalization) Let f be a β-strongly convex function w.r.t. a norm ‖ · ‖ and assume

that f ⋆(0) = 0. Let X = {x : ‖x‖⋆ ≤ X} and W = {w : f (w)≤ fmax}. Consider the class of linear

functions, F = {x 7→ 〈w,x〉 : w ∈W }. Then, for any data set T ∈ X n, we have

RT (F )≤ X

√
2 fmax

βn
.

Proof Let λ > 0. Apply Corollary 4 with u = w and vi = λεixi to get,

sup
w∈W

n

∑
i=1

〈w,λεixi〉 ≤
λ2

2β

n

∑
i=1

‖εixi‖2
⋆+ sup

w∈W

f (w)+
n

∑
i=1

〈∇ f ⋆(v1:i−1),εixi〉

≤ λ2X2n

2β
+ fmax +

n

∑
i=1

〈∇ f ⋆(v1:i−1),εixi〉 .

Now take expectation on both sides. The left hand side is nλRT (F ) and the last term on the right

hand side becomes zero. Dividing throughout by nλ, we get, RT (F )≤ λX2

2β + fmax

nλ . Optimizing over

λ gives us the result.

Combining the above with the contraction lemma and standard Rademacher based generaliza-

tion bounds (see, e.g., Bartlett and Mendelson, 2002; Kakade et al., 2008) we obtain the following

result.
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Corollary 8 Let f be a β-strongly convex function w.r.t. a norm ‖·‖ and assume that f ⋆(0) = 0. Let

X = {x : ‖x‖⋆ ≤ X} and W = {w : f (w)≤ fmax}. Let l be an ρ-Lipschitz scalar loss function and

let D be an arbitrary distribution over X ×Y . Then, the algorithm that receives n i.i.d. examples

and returns ŵ that minimizes the empirical risk, L̂(w), satisfies

E

[
L(ŵ)− min

w∈W
L(w)

]
≤ 2ρX

√
2 fmax

βn
,

where expectation is with respect to the choice of the n i.i.d. examples.

We note that it is also easy to obtain a generalization bound that holds with high probability, but for

simplicity of the presentation we stick to expectations.

2.4 Strongly Convex Matrix Functions

Before we consider strongly convex matrix functions, let us recall the following result about strong

convexity of vector ℓq norm. Its proof is standard and can be found, for example, in the work of

Shalev-Shwartz (2007).

Lemma 9 Let q ∈ [1,2]. The function f : Rd → R defined as f (w) = 1
2
‖w‖2

q is (q− 1)-strongly

convex with respect to ‖ · ‖q over Rd .

We mainly use the above lemma to obtain results with respect to the norms ‖ ·‖2 and ‖ ·‖1. The

case q = 2 is straightforward. Obtaining results with respect to ‖ · ‖1 is slightly more tricky since

for q = 1 the strong convexity parameter is 0 (meaning that the function is not strongly convex). To

overcome this problem, we shall set q to be slightly more than 1, for example, q= ln(d)/(ln(d)−1).
For this choice of q, the strong convexity parameter becomes q−1 = 1/(ln(d)−1)≥ 1/ ln(d) and

the value of p corresponding to the dual norm is p = (1−1/q)−1 = ln(d). Note that for any x ∈R
d

we have

‖x‖∞ ≤ ‖x‖p ≤ (d‖x‖p
∞)

1/p = d1/p‖x‖∞ = e‖x‖∞ ≤ 3‖x‖∞ .

Hence the dual norms are also equivalent up to a factor of 3: ‖w‖1 ≥ ‖w‖q ≥ ‖w‖1/3. The above

lemma therefore implies the following corollary.

Corollary 10 The function f : Rd → R defined as f (w) = 1
2
‖w‖2

q for q = ln(d)
ln(d)−1

is 1/(3ln(d))-

strongly convex with respect to ‖ · ‖1 over Rd .

We now consider two families of strongly convex matrix functions.

2.4.1 SCHATTEN q-NORMS

The first result we need is the counterpart of Lemma 9 for the q-Schatten norm defined as ‖X‖S(q) :=
‖σ(X)‖q (see Argyriou et al., 2010 for some recent work involving general Schatten norms). This

extremely useful result can be found in Ball et al. (1994). The proof there uses complex analysis.

We are not aware of an elementary proof.

Theorem 11 (Schatten matrix functions) Let q ∈ [1,2]. The function F : Rm×n → R defined as

F(X) = 1
2
‖σ(X)‖2

q is (q− 1)-strongly convex w.r.t. the q-Schatten norm ‖X‖S(q) := ‖σ(X)‖q over

R
m×n.
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As above, choosing q to be lnm′
ln(m′)−1

for m′ = min{m,n} gives the following corollary.

Corollary 12 The function F : Rm×n → R defined as F(W) = 1
2
‖W‖2

S(q) for q = ln(m′)
ln(m′)−1

is

1/(3ln(m′))-strongly convex with respect to ‖ · ‖S(1) over Rm×n.

2.4.2 GROUP NORMS

Let X = (X1X2 . . .Xn) be a m×n real matrix with columns Xi ∈Rm. Given two (vector) norms ‖·‖r

and ‖ · ‖p, we can define a new norm ‖X‖r,p as

‖X‖r,p := ‖(‖X1‖r, . . . ,‖Xn‖r)‖p .

That is, we apply ‖ · ‖r to each column of X to get a vector in R
n to which we apply the norm ‖ · ‖p

to get the value of ‖X‖r,p. It is easy to check that this is indeed a norm. The dual of ‖ · ‖r,p is ‖ · ‖s,t

where 1/r+1/s = 1 and 1/p+1/t = 1. The following theorem, which appears in a slightly weaker

form in the work of Juditsky and Nemirovski (2008), provides us with an easy way to construct

strongly convex group norms. We provide a proof in the appendix which is much simpler than that

of Juditsky and Nemirovski (2008) and is completely “calculus free”.

Theorem 13 (Group Norms) Let Ψ,Φ be absolutely symmetric norms on R
m,Rn. Let Φ2 ◦√ :

R
n→ R

∗ denote the following function,

(Φ2 ◦√)(x) := Φ2(
√

x1, . . . ,
√

xn) . (1)

Suppose, (Φ2 ◦√) is a norm on R
n. Further, let the functions Ψ2 and Φ2 be σ1- and σ2-smooth

w.r.t. Ψ and Φ respectively. Then, ‖ · ‖2
Ψ,Φ is (σ1 +σ2)-smooth w.r.t. ‖ · ‖Ψ,Φ.

The condition that the function defined in (1) be a norm may appear strange but in fact it already

occurs in the matrix analysis literature. Norms satisfying it are called quadratic symmetric gauge

functions (or Q-norms) (Bhatia, 1997, p. 89). It is easy to see that ‖ · ‖p for p ≥ 2 is a Q-norm.

Now using strong convexity/strong smoothness duality and the discussion preceding Corollary 10,

we get the following corollary.

Corollary 14 The function F :Rm×n→R defined as F(W)= 1
2
‖W‖2

2,q for q= ln(n)
ln(n)−1

is 1/(3ln(n))-

strongly convex with respect to ‖ · ‖2,1 over Rm×n.

2.5 Putting it All Together

Combining Lemma 9 and Corollary 10 with the bounds given in Theorem 5 and Corollary 8 we

obtain the following two corollaries.

Corollary 15 Let W = {w ∈ R
d : ‖w‖1 ≤W} and let l1, . . . , ln be a sequence of convex functions

that are X-Lipschitz w.r.t. ‖ · ‖∞. Then, online mirror descent run with f (w) = 1
2
‖w‖2

q for q =
ln(d)/(ln(d)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(wt)− min
w∈W

1

n

n

∑
t=1

lt(w) ≤ X W

√
3ln(d)

n
.
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Corollary 16 Let W = {w : ‖w‖1 ≤W} and let X = {x ∈ R
d : ‖x‖∞ ≤ X}. Let l be an ρ-Lipschitz

scalar loss function and let D be an arbitrary distribution over X ×Y . Then, any minimizer ŵ of

the empirical risk

L̂(w) =
1

n

n

∑
i=1

l(〈w,xi〉 ,yi)

satisfies

E

[
L(ŵ)− min

w∈W
L(w)

]
≤ 2ρX W

√
3ln(d)

n
.

Results of the same flavor can be obtained for learning matrices. For simplicity, we present the

following two corollaries only for the online model, but it is easy to derive their batch counterparts.

Corollary 17 Let W = {W ∈ R
k×d : ‖W‖2,1 ≤W} and let l1, . . . , ln be a sequence of functions

that are X-Lipschitz w.r.t. ‖ · ‖2,∞. Then, online mirror descent run with f (W) = 1
2
‖W‖2

2,q for

q = ln(d)/(ln(d)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(Wt)− min
W∈W

1

n

n

∑
t=1

lt(W) ≤ X W

√
3ln(d)

n
.

Corollary 18 Let W = {W ∈ R
k×d : ‖W‖S(1) ≤W} and let l1, . . . , ln be a sequence of functions

that are X-Lipschitz w.r.t. ‖ · ‖S(∞). Then, online mirror descent run with f (W) = 1
2
‖W‖2

S(q) for

q = ln(k′)/(ln(k′)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(Wt)− min
W∈W

1

n

n

∑
t=1

lt(W) ≤ X W

√
3ln(k′)

n
,

where k′ = min{k,d}.

Remark 19 The gradient mapping W 7→ ∇ f ⋆(W) that is needed to run the online mirror descent

algorithm can be easily computed both for the group norm ( f (W) = 1
2
‖W‖2

r,p) and Schatten norm

( f (W) = 1
2
‖W‖2

S(q)) cases. In the latter case, a singular value decomposition of W will be needed

(see Theorem 30 in the Appendix).

3. Matrix Regularization

We are now ready to demonstrate the power of the general techniques we derived in the previous

section. Consider a learning problem (either online or batch) in which X is a subset of a matrix

space (of dimension k× d) and we would like to learn a linear predictor of the form X 7→ 〈W,X〉
where W is also a matrix of the same dimension. The loss function takes the form l(〈W,X〉 ,y) and

we assume for simplicity that l is 1-Lipschitz with respect to its first argument. For example, l can

be the absolute loss, l(a,y) = |a− y|, or the hinge-loss, l(a,y) = max{0,1− ya}.
For the sake of concreteness, let us focus on the batch learning setting, but we note that the

discussion below is relevant to the online learning model as well. Our prior knowledge on the

learning problem is encoded by the definition of the comparison class W that we use. In particular,
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all the comparison classes we use take the form W = {W : ‖W‖ ≤W}, where the only difference

is what norm do we use. We shall compare the following four classes:

W1,1 = {W : ‖W‖1,1 ≤W1,1} , W2,2 = {W : ‖W‖2,2 ≤W2,2} ,
W2,1 = {W : ‖W‖2,1 ≤W2,1} , WS(1) = {W : ‖W‖S(1) ≤WS(1)} .

Let us denote X∞,∞ = supx∈X ‖X‖∞,∞. We define X2,2,X2,∞,XS(∞) analogously. Applying the

results of the previous section to these classes we obtain the bounds given in Table 1 where for

simplicity we ignore constants.

class W1,1 W2,2 W2,1 WS(1)

bound W1,1 X∞,∞

√
ln(kd)

n
W2,2 X2,2

√
1
n

W2,1 X2,∞

√
ln(d)

n
WS(1) XS(∞)

√
ln(min{d,k})

n

Table 1: List of bounds for learning with matrices. For simplicity we ignore constants.

Let us now discuss which class should be used based on prior knowledge on properties of the

learning problem. We start with the well known difference between W1,1 and W2,2. Note that

both of these classes ignore the fact that W is organized as a k× d matrix and simply refer to W

as a single vector of dimension kd. The difference between W1,1 and W2,2 is therefore the usual

difference between ℓ1 and ℓ2 regularization. To understand this difference, suppose that W is some

matrix that performs well on the distribution we have. Then, we should take the radius of each class

to be the minimal possible while still containing W, namely, either ‖W‖1,1 or ‖W‖2,2. Clearly,

‖W‖2,2 ≤ ‖W‖1,1 and therefore in terms of this term there is a clear advantage to use the class

W2,2. On the other hand, X2,2 ≥ X∞,∞. We therefore need to understand which of these inequalities

is more important. Of course, in general, the answer to this question is data dependent. However,

we can isolate properties of the distribution that can help us choose the better class.

One useful property is sparsity of either X or W. If X is assumed to be s sparse (i.e., it has

at most s non-zero elements), then we have X2,2 ≤
√

sX∞,∞. That is, for a small s, the difference

between X2,2 and X∞,∞ is small. In contrast, if X is very dense and each of its entries is bounded

away from zero, for example, X ∈ {±1}k×d , then ‖X‖2,2 =
√

kd‖X‖∞,∞. The same arguments are

true for W. Hence, with prior knowledge about the sparsity of X and W, we can guess which of the

bounds will be smaller.

Next, we tackle the more interesting cases of W2,1 and WS(1). For the former, recall that we first

apply ℓ2 norm on each column of W and then apply ℓ1 norm on the obtained vector of norm values.

Similarly, to calculate ‖X‖2,∞ we first apply ℓ2 norm on columns of X and then apply ℓ∞ norm on

the obtained vector of norm values. Let us now compare W2,1 to W1,1. Suppose that the columns

of X are very sparse. Therefore, the ℓ2 norm of each column of X is very close to its ℓ∞ norm. On

the other hand, if some of the columns of W are dense, then ‖W‖2,1 can be order of
√

k smaller

than ‖W‖1,1. In that case, the class W2,1 is preferable over the class W1,1. As we show later, this

is the case in multi-class problems, and we shall indeed present an improved multi-class algorithm

that uses the class W2,1. Of course, in some problems, columns of X might be very dense while

columns of W can be sparse. In such cases, using W1,1 is better than using W2,1.
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Now lets compare W2,1 to W2,2. Similarly to the previous discussion, choosing W2,1 over W2,2

makes sense if we assume that the vector of ℓ2 norms of columns, (‖W1‖2, . . . ,‖Wd‖2), is sparse.

This implies that we assume a “group”-sparsity pattern of W, that is, each column of W is either the

all zeros column or is dense. This type of grouped-sparsity has been studied in the context of group

Lasso and multi-task learning (Argyriou et al., 2008). Indeed, we present bounds for multi-task

learning that relies on this assumption. Without the group-sparsity assumption, it might be better to

use W2,2 over W2,1.

Finally, we discuss when it makes sense to use WS(1) (see Srebro et al., 2005 for one of the early

applications of this norm in machine learning). Recall that ‖W‖S(1) = ‖σ(W)‖1, where σ(W) is the

vector of singular values of W, and ‖X‖S(∞) = ‖σ(X)‖∞. Therefore, the class WS(1) should be used

when we assume that the spectrum of W is sparse while the spectrum of X is dense. This means

that the prior knowledge we employ is that W is of low rank while X is of high rank. Note that W2,2

can be defined equivalently as WS(2). Therefore, the difference between WS(1) and W2,2 is similar

to the difference between W1,1 and W2,2 just that instead of considering sparsity properties of the

elements of W and X we consider sparsity properties of the spectrum of W and X.

In the next sections we demonstrate how to apply the general methodology described above in

order to derive a few generalization and regret bounds for problems of recent interest.

4. Multi-task Learning

Suppose we are simultaneously solving k-multivariate prediction problems, where each learning

example is of the form (X,y) where X ∈ X ⊆ R
k×d is a matrix of example vectors with examples

from different tasks sitting in rows of X, and y ∈Rk are the responses for the k problems. To predict

the k responses, we learn a matrix W ∈R
k×d such that Diag(W⊤X) is a good predictor of y. In this

section, we denote row j of W by w j. The predictor for the jth task is therefore w j. The quality of

a prediction
〈
w j,x j

〉
for the j’th task is assessed by a loss function l j : R×Y j→ R. The total loss

of W on an example (X,y) is defined to be the sum of the individual losses,

l(W,X,y) =
k

∑
j=1

l j(
〈
w j,x j

〉
,y j) .

This formulation allows us to mix regression and classification problems and even use different loss

functions for different tasks. Such “heterogeneous” multi-task learning has attracted recent attention

(Yang et al., 2009).

If the tasks are related, then it is natural to use regularizers that “couple” the tasks together so

that similarities across tasks can be exploited. Considerations of common sparsity patterns (same

features relevant across different tasks) lead to the use of group norm regularizers (i.e., using the

comparison class W2,1 defined in the previous section) while rank considerations (the w j’s lie in a

low dimensional linear space) lead to the use of unitarily invariant norms as regularizers (i.e., the

comparison class is WS(1)).

We now describe online and batch multi-task learning using various matrix norms.
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Algorithm 2 Online Multi-task Mirror Descent

W1← ∇ f ⋆(0)
for t = 1 to T do

Predict using Wt ∈W ⊆ R
k×d

Receive Xt ∈ R
k×d , yt ∈ R

k

Pick Vt whose row j is v
j
t = (l j)′

(〈
w

j
t ,x

j
t

〉
,y

j
t

)
x

j
t

Wt+1← ∇ f ⋆ (−η∑t
s=1 Vt)

end for

4.1 Online Multi-task Learning

In the online model, on round t the learner first uses Wt to predict the vector of responses and then

it pays the cost

lt(Wt) = l(Wt ,Xt ,yt) =
k

∑
j=1

l j
(〈

w
j
t ,x

j
t

〉
,y

j
t

)
.

Let Vt ∈ R
k×d be a sub-gradient of lt at Wt . It is easy to verify that the j’th row of Vt , denoted

v
j
t , is a sub-gradient of l j

(〈
w

j
t ,x

j
t

〉
,y

j
t

)
at w

j
t . Assuming that l j is ρ-Lipschitz with respect to its

first argument, we obtain that v
j
t = τ

j
t x

j
t for some τ

j
t ∈ [−ρ,ρ]. In other words, Vt = Diag(τt)Xt .

It is easy to verify that ‖Vt‖r,p ≤ ρ‖X‖r,p for any r, p ≥ 1. In addition, since any Schatten norm is

sub-multiplicative we also have that ‖Vt‖S(∞) ≤ ‖Diag(τt)‖S(∞) ‖Xt‖S(∞) ≤ ρ‖Xt‖S(∞).

Algorithm 2 is simply the instantiation of Algorithm 1 for the multi-task setting. Using f (W)
to be one of the functions 1

2
‖W‖2

q1,q1
, 1

2
‖W‖2

2,2, 1
2
‖W‖2

2,q2
, 1

2
‖W‖2

S(q3)
, for appropriate choices1 of

q1,q2,q3, we obtain the following result.

Corollary 20 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X∞,∞, X2,2

,X2,∞, XS(∞) be the radii of X w.r.t. the corresponding dual norms. Then, Algorithm 2 achieves with

regret bounds given in Table 1 (ignoring constants).

Let us now discuss few implications of these bounds,2 and for simplicity assume that k < d.

Recall that each column of X represents the value of a single feature for all the tasks. As discussed

in the previous section, if the matrix X is dense and if we assume that W is sparse, then using the

class W1,1 is better than using W2,2. Such a scenario often happens when we have many irrelevant

features and only are few features that can predict the target reasonably well. Concretely, suppose

that X∈ {0,1}k×d and that it typically has sx non-zero values. Suppose also that there exists a matrix

W that predicts the targets of the different tasks reasonably well and has sw non-zero values. Then,

the bound for W1,1 is order of sw

√
ln(dk)/n while the bound for W2,2 is order of

√
sw sx/n. Thus,

W1,1 will be better if sw < sx/ ln(dk).
Now, consider the class W2,1. Let us further assume the following. The non-zero elements

of W are grouped into sg columns and are roughly distributed evenly over those columns; The

non-zeros of X are roughly distributed evenly over the columns. Then, the bound for W2,1 is

1. The choices are q1 = ln(kd)/(ln(kd)−1), q2 = ln(d)/(ln(d)−1), q3 = ln(k′)/(ln(k′)−1) where k′ = min{k,d}.
2. We should alert the reader that the discussion here is based on upper bounds on the regret. While we have made the

best effort to derive the tightest bounds we could, our understanding would have a firmer foundation if we also had

matching lower bounds.
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sg

√
(sw/sg)(sx/d) ln(d)/n =

√
sg sw (sx/d) ln(d)/n. This bound will be better than the bound of

W2,2 if sg ln(d)< d and will be better than the bound of W1,1 if sgsx/d < sw. We see that there are

scenarios in which the group norm is better than the non-grouped norms and that the most adequate

class depends on properties of the problem and our prior beliefs on a good predictor W.

As to the bound for WS(1), it is easy to verify that if the rows of W sits in a low dimensional

subspace then the spectrum of W will be sparse. Similarly, the value of ‖X‖S(∞) depends on the

maximal singular value of X, which is likely to be small if we assume that all the “energy” of X is

spread over its entire spectrum. In such cases, WS(1) can be the best choice. This is an example of

a different type of prior knowledge on the problem.

4.2 Batch Multi-task Learning

In the batch setting, we see a data set T = ((X1,y1), . . . ,(Xn,yn)) consisting of i.i.d. samples drawn

from a distribution D over X ×Y . In the k-task setting, X ⊆ R
k×d . Analogous to the single task

case, we define the risk and empirical risk of a multi-task predictor W ∈ R
k×d as:

L̂(W) :=
1

n

n

∑
i=1

k

∑
j=1

l j
(〈

w j,X
j
i

〉
,y

j
i

)
,

L(W) := E(X,y)∼D

[
k

∑
j=1

l j
(〈

w j,X j
〉
,y j

)
]
.

Let W be some class of matrices, and define the empirical risk minimizer,

Ŵ := argminW∈W L̂(Ŵ) .

To obtain excess risk bounds for Ŵ, we need to consider the k-task Rademacher complexity

R k
T (W ) := E

[
sup

W∈W

1

n

n

∑
i=1

k

∑
j=1

ε
j
i

〈
w j,X

j
i

〉]
,

because, assuming each l j is ρ-Lipschitz, we have the bound

E

[
L(Ŵ)− min

W∈W
L(W)

]
≤ ρE

[
R k

T (W )
]
.

This bound follows easily from standard results, such as the Lipschitz contraction inequality (Bartlett

and Mendelson, 2002), and Theorem 8 of Maurer (2006). We can use matrix strong convexity to

give the following k-task Rademacher bound.

Theorem 21 (Multi-task Generalization) Suppose F(W) ≤ fmax for all W ∈W for a function F

that is β-strongly convex w.r.t. some (matrix) norm ‖ · ‖. If the norm ‖ · ‖⋆ is invariant under sign

changes of the rows of its argument matrix then, for any data set T , we have, R k
T
(W )≤ X

√
2 fmax

βn
,

where X is an upper bound on ‖Xi‖⋆.
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Proof We can rewrite R k
T
(W ) as

E

[
sup

W∈W

1

n

n

∑
i=1

k

∑
j=1

ε
j
i

〈
w j,X

j
i

〉]
= E

[
sup

W∈W

1

n

k

∑
j=1

〈
w j,

n

∑
i=1

ε
j
i X

j
i

〉]

= E

[
sup

W∈W

1

n

〈
W,

n

∑
i=1

X̃i

〉]
,

where X̃i ∈ R
k×d is defined by X̃

j
i = ε

j
i X

j
i and we have switched to a matrix inner product in the

last line. By the assumption on the dual norm ‖ · ‖⋆, ‖X̃i‖⋆ = ‖Xi‖⋆ ≤ X . Now using Corollary 4

and proceeding as in the proof of Theorem 7, we get, for any λ > 0, R k
T
(W ) ≤

(
fmax

λn
+ λX2

2β

)
.

Optimizing over λ proves the theorem.

Note that both group (r, p)-norms and Schatten-p norms satisfy the invariance under row flips

mentioned in the theorem above. Thus, we get the following corollary.

Corollary 22 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X∞,∞, X2,2,

X2,∞, XS(∞) be the radii of X w.r.t. the corresponding dual norms. Then, the (expected) excess multi-

task risk of the empirical multi-task risk minimizer Ŵ satisfies the same bounds as given in Table

1.

5. Multi-class Learning

In this section we consider multi-class categorization problems. We focus on the online learning

model. On round t, the online algorithm receives an instance xt ∈ R
d and is required to predict

its label as a number in {1, . . . ,k}. Following the construction of Crammer and Singer (2000), the

prediction is based on a matrix Wt ∈ R
k×d and is defined as the index of the maximal element of

the vector Wtxt . We use the hinge-loss function adapted to the multi-class setting. That is,

lt(Wt) = max
r

(1[r 6=yt ]− (
〈
w

yt
t ,xt

〉
−〈wr

t ,xt〉)) = max
r

(1[r 6=yt ]− (
〈
W,Xr,yt

t

〉
)) ,

where X
r,yt
t is a matrix with xt on the y’th row, −xt on the r’th row, and zeros in all other elements.

It is easy to verify that lt(Wt) upper bounds the zero-one loss, that is, if the prediction of Wt is r

then lt(Wt)≥ 1[r 6=yt ].

A sub-gradient of lt(Wt) is either a matrix of the form −X
r,yt
t or the all zeros matrix. Note that

each column of X
r,yt
t is very sparse (contains only two elements). Therefore,

‖Xr,yt
t ‖∞,∞ = ‖xt‖∞ , ‖Xr,yt

t ‖2,2 =
√

2‖xt‖2 ,

‖Xr,yt
t ‖2,∞ =

√
2‖xt‖∞ , ‖Xr,yt

t ‖S(∞) =
√

2‖xt‖2 .

Based on this fact, we can easily obtain the following result.

Corollary 23 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X2 =maxt ‖xt‖2

and X∞ = maxt ‖xt‖∞. Then, there exist online multi-class learning algorithms with regret bounds

given by the following table.
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class W1,1 W2,2 W2,1 WS(1)

bound W1,1 X∞

√
ln(kd)

n
W2,2 X2

√
1
n

W2,1 X∞

√
ln(d)

n
WS(1) X2

√
ln(min{d,k})

n

Let us now discuss the implications of this bound. First, if X2 ≈ X∞, which will happen if

instance vectors are sparse, then W1,1 and W2,1 will be inferior to W2,2. In such a case, using WS(1)

can be competitive if W sits in a low dimensional space so that ‖W‖S(1) ≈ ‖W‖2,2. Using WS(1)

in such a case was previously suggested by Amit et al. (2007), who observed that empirically, the

class WS(1) performs better than W2,2 when there is a shared structure between classes. They only

gave empirical results and our analysis given in Corollary 23 provides a first rigorous regret bound

for their algorithm. Unfortunately, our bound for WS(1) is not better than the bound for W2,2 even in

the low rank case. Explaining the empirical success of the trace-norm based multi-class algorithm

thus remains a challenging open question.

Second, if X2 is much larger than X∞, and if columns of W share common sparsity pattern,

then W2,1 can be factor of
√

k better than W1,1 and factor of
√

d better than W2,2. To demonstrate

this, let us assume that each vector xt is in {±1}d and it represents experts advice of d experts.

Therefore, X2 =
√

d X∞. Next, assume that a combination of the advice of s≪ d experts predicts

very well the correct label (e.g., the label is represented by the binary number obtained from the

advice of s = log(k) experts). In that case, W will be a matrix such that all of its columns will be 0

except s columns which will take values in {±1}. The bounds for W1,1,W2,2, and W2,1 in that case

become (proportional to) ks
√

ln(kd),
√

ksd, and s
√

k ln(d) respectively. That is, W2,1 is a factor of√
k better than W1,1 and a factor of

√
d/s better than W2,2 (ignoring logarithmic terms). The class

WS(1) will also have a dependent on
√

d in such a case and thus it will be much worse than W2,2

when d is large.

For concreteness, we now use our result for deriving a group multi-class perceptron algorithm.

To the best of our knowledge, this algorithm is new, and based on the discussion above, it should

outperform both the multi-class perceptron of Crammer and Singer (2000) as well as the vanilla

application of the p-norm perceptron framework of Gentile (2003) and Grove et al. (2001) for

multi-class categorization.

The algorithm is a specification of the general online mirror descent procedure (Algorithm 1)

with f (W) = 1
2
‖W‖2

2,r, r = ln(d)/(ln(d)−1), and with a conservative update (i.e., we ignore rounds

on which no prediction mistake has been made). Recall that the Fenchel dual function is f ⋆(V) =
1
2
‖V‖2

2,p where p = (1−1/r)−1 = ln(d). The (i, j) element of the gradient of f ⋆ is

(∇ f ⋆(V))i, j =
‖V j‖p−2

2

‖V‖p−2
2,p

Vi, j . (2)

To analyze the performance of Algorithm 3, let I ⊆ [n] be the set of rounds on which the al-

gorithm made a prediction mistake. Note that the above algorithm is equivalent (in terms of the

number of mistakes) to an algorithm that performs the update Vt+1 = Vt +ηUt for any η (see Gen-

tile, 2003). Therefore, we can apply our general online regret bound (Corollary 17) on the sequence

of examples in I we obtain that for any W,

∑
t∈I

lt(Wt)−∑
t∈I

lt(W) ≤ X∞ ‖W‖2,1

√
6ln(d) |I| .
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Algorithm 3 Group Multi-class Perceptron

p = logd

V1 = 0 ∈ R
k×d

for t = 1, . . . ,T do

Set Wt = ∇ f ⋆(Vt) (as defined in (2))

Receive xt ∈ R
d

ŷt = argmaxr∈[k] (Wtxt)r

Predict ŷt and receive true label yt

Ut ∈ R
k×d is the matrix with xt in the ŷt row and −xt in the yt row

Update: Vt+1 = Vt −Ut

end for

Recall that lt(Wt) upper bounds the zero-one error and therefore the above implies that

|I|−∑
t∈I

lt(W) ≤ X∞ ‖W‖2,1

√
6ln(d) |I| .

Solving for |I| gives us the following result.

Corollary 24 The number of mistakes Algorithm 3 will make on any sequence of examples for

which ‖xt‖∞ ≤ X∞ is upper bounded by

min
W

∑
t

lt(W)+X∞ ‖W‖2,1

√
3ln(d) ∑

t

lt(W)+3X2
∞ ‖W‖2

2,1 ln(d) .

6. Kernel Learning

We briefly review the kernel learning setting first explored in Lanckriet et al. (2004). Let X be an

input space and let T = (x1, . . . ,xn) ∈ X n be the training data set. Kernel algorithms work with the

space of linear functions, {
x 7→

n

∑
i=1

αiK(xi,x) : αi ∈ R

}
.

In kernel learning, we consider a kernel family K and consider the class,

{
x 7→

n

∑
i=1

αiK(xi,x) : K ∈K , αi ∈ R

}
.

In particular, we can choose a finite set {K1, . . . ,Kk} of base kernels and consider the convex com-

binations, K +
c =

{
∑k

j=1 µ jK j : µ j ≥ 0, ∑k
j=1 µ j = 1

}
. This is the unconstrained function class. In

applications, one constrains the function class in some way. The class considered by Lanckriet et al.

(2004) is

FK +
c
=

{
x 7→

n

∑
i=1

αiK(xi, ·) : K =
k

∑
j=1

µ jK j, µ j ≥ 0,
k

∑
j=1

µ j = 1, α⊤K(T )α≤ 1/γ2

}
(3)

where γ > 0 is a margin parameter and K(T )i, j = K(xi,x j) is the Gram matrix of K on the data set

T .
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Theorem 25 (Kernel learning) Consider the class FK +
c

defined in (3). Let K j(x,x)≤B for 1≤ j≤ k

and x ∈ X . Then, RT (FK +
c
)≤ e

√
B logk

γ2n
.

The proof follows directly from the equivalence between kernel learning and group Lasso (Bach,

2008), and then applying our bound on the class W2,1. For completeness, we give a rigorous proof

in the appendix.

Note that the dependence on the number of base kernels, k, is rather mild (only logarithmic)—

implying that we can learn a kernel as a (convex) combination of a rather large number of base

kernels. Also, let us discuss how the above improves upon the prior bounds provided by Lanckriet

et al. (2004) and Srebro and Ben-David (2006) (neither of which had logarithmic k dependence).

The former proves a bound of O
(√

Bk
γ2n

)
which is quite inferior to our bound. We cannot com-

pare our bound directly to the bound of Srebro and Ben-David (2006) as they do not work with

Rademacher complexities. However, if one compares the resulting generalization error bounds,

then their bound is O



√

k log n3B

γ2k
+ B

γ2 log
γn√

B
log nB

γ2

n


 and ours is O

(√
B logk

γ2n

)
. If k ≥ n, their bound is

vacuous (while ours is still meaningful). If k ≤ n, our bound is better.

Finally, we note that recently Ying and Campbell (2009) devoted a dedicated effort to derive

a result similar to Theorem 25 using a Rademacher chaos process of order two over candidate

kernels. In contrast to their proof, our result seamlessly follows from the general framework of

deriving bounds using the strong-convexity/strong-smoothness duality.
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Appendix A. Convex Analysis and Matrix Computation

We briefly recall some key definitions from convex analysis that are useful throughout the paper (for

details, see any of the several excellent references on the subject, for example, Borwein and Lewis,

2006; Rockafellar, 1970).

A.1 Convex Analysis

We consider convex functions f : X → R∪ {∞}, where X is a Euclidean vector space equipped

with an inner product 〈·, ·〉. We denote R
∗ = R∪{∞}. Recall that the subdifferential of f at x ∈ X ,

denoted by ∂ f (x), is defined as ∂ f (x) := {y ∈ X : ∀z, f (x+ z) ≥ f (x) + 〈y,z〉}. The Fenchel

conjugate f ⋆ : X → R
∗ is defined as f ⋆(y) := supx∈X 〈x,y〉− f (x).

We also deal with a variety of norms in this paper. Recall that given a norm ‖ · ‖ on X , its dual

norm is defined as ‖y‖⋆ := sup{〈x,y〉 : ‖x‖ ≤ 1}. An important property of the dual norm is that

the Fenchel conjugate of the function 1
2
‖x‖2 is 1

2
‖y‖2

⋆.
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The definition of Fenchel conjugate implies that for any x,y, f (x) + f ⋆(y) ≥ 〈x,y〉, which is

known as the Fenchel-Young inequality. An equivalent and useful definition of the subdifferential

can be given in terms of the Fenchel conjugate: ∂ f (x) = {y ∈ X : f (x)+ f ∗(y) = 〈x,y〉}.

A.2 Convex Analysis of Matrix Functions

We consider the vector space X = R
m×n of real matrices of size m×n and the vector space X = S

n

of symmetric matrices of size n× n, both equipped with the inner product, 〈X,Y〉 := Tr(X⊤Y).
Recall that any matrix X ∈ R

m×n can be decomposed as X = UDiag(σ(X))V where σ(X) denotes

the vector (σ1,σ2, . . .σl) (l = min{m,n}), where σ1 ≥ σ2 ≥ . . .≥ σl ≥ 0 are the singular values of

X arranged in non-increasing order, and U ∈ R
m×m,V ∈ R

n×n are orthogonal matrices. Also, any

matrix X ∈ S
n can be decomposed as, X = UDiag(λ(X))U⊤ where λ(X) = (λ1,λ2, . . .λn), where

λ1≥ λ2≥ . . .≥ λn are the eigenvalues of X arranged in non-increasing order, and U is an orthogonal

matrix. Two important results relate matrix inner products to inner products between singular (and

eigen-) values

Theorem 26 (von Neumann) Any two matrices X ,Y ∈ R
m×n satisfy the inequality

〈X,Y〉 ≤ 〈σ(X),σ(Y)〉 .

Equality holds above, if and only if, there exist orthogonal U,V such that

X = UDiag(σ(X))V, Y = UDiag(σ(Y))V .

Theorem 27 (Fan) Any two matrices X,Y ∈ S
n satisfy the inequality

〈X,Y〉 ≤ 〈λ(X),λ(Y)〉 .

Equality holds above, if and only if, there exists orthogonal U such that

X = UDiag(λ(X))U⊤, Y = UDiag(λ(Y))U⊤ .

We say that a function g : Rn → R
∗ is symmetric if g(x) is invariant under arbitrary permuta-

tions of the components of x. We say g is absolutely symmetric if g(x) is invariant under arbitrary

permutations and sign changes of the components of x.

Given a function f : Rl → R
∗, we can define a function f ◦σ : Rm×n→ R

∗ as,

( f ◦σ)(X) := f (σ(X)) .

Similarly, given a function g : Rn→ R
∗, we can define a function g◦λ : Sn→ R

∗ as,

(g◦λ)(X) := g(λ(X)) .

This allows us to define functions over matrices starting from functions over vectors. Note that

when we use f ◦σ we are assuming that X = R
m×n and for g ◦λ we have X = S

n. The following

result allows us to immediately compute the conjugate of f ◦σ and g◦λ in terms of the conjugates

of f and g respectively.
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Theorem 28 (Lewis, 1995) Let f : Rl → R
∗ be an absolutely symmetric function. Then,

( f ◦σ)⋆ = f ⋆ ◦σ .

Let g : Rn→ R
∗ be a symmetric function. Then,

(g◦λ)⋆ = g⋆ ◦λ .

Proof Lewis (1995) proves this for singular values. For the eigenvalue case, the proof is entirely

analogous to that in Lewis (1995), except that Fan’s inequality is used instead of von Neumann’s

inequality.

Using this general result, we are able to define certain matrix norms.

Corollary 29 (Matrix norms) Let f : Rl → R
∗ be absolutely symmetric. Then if f = ‖ · ‖ is a norm

on R
l then f ◦σ = ‖σ(·)‖ is a norm on R

m×n. Further, the dual of this norm is ‖σ(·)‖⋆.

Let g : Rn→ R
∗ be symmetric. Then if g = ‖ · ‖ is a norm on R

n then g◦λ = ‖λ(·)‖ is a norm

on S
n. Further, the dual of this norm is ‖λ(·)‖⋆.

Another nice result allows us to compute subdifferentials of f ◦σ and g◦λ (note that elements in

the subdifferential of f ◦σ and g◦λ are matrices) from the subdifferentials of f and g respectively.

Theorem 30 (Lewis, 1995) Let f : Rl → R
∗ be absolutely symmetric and X ∈ R

m×n. Then,

∂( f ◦σ)(X) = {UDiag(µ)V⊤ : µ ∈ ∂ f (σ(X))U,V orthogonal, X = UDiag(σ(X))V⊤} .

Let g : Rn→ R
∗ be symmetric and X ∈ S

n. Then,

∂(g◦λ)(X) = {UDiag(µ)U⊤ : µ ∈ ∂g(λ(X))U orthogonal, X = UDiag(λ(X))U⊤} .

Proof Again, Lewis (1995) proves the case for singular values. For the eigenvalue case, again,

the proof is identical to that in Lewis (1995), except that Fan’s inequality is used instead of von

Neumann’s inequality.

Appendix B. Technical Proofs

We now provide the proofs omitted from the main body of the paper.

B.1 Proof of Theorem 3

First, (Shalev-Shwartz, 2007, Lemma 15) yields one half of the claim ( f strongly convex ⇒ f ⋆

strongly smooth). It is left to prove that f is strongly convex assuming that f ⋆ is strongly smooth.

For simplicity assume that β = 1. Denote g(y) = f ⋆(x+y)− ( f ⋆(x)+ 〈∇ f ⋆(x),y〉). By the smooth-

ness assumption, g(y) ≤ 1
2
‖y‖2

⋆. This implies that g⋆(a) ≥ 1
2
‖a‖2 because of (Shalev-Shwartz and
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Singer, 2008, Lemma 19) and that the conjugate of half squared norm is half squared of the dual

norm. Using the definition of g we have

g⋆(a) = sup
y

〈y,a〉−g(y)

= sup
y

〈y,a〉− ( f ⋆(x+ y)− ( f ⋆(x)+ 〈∇ f ⋆(x),y〉))

= sup
y

〈y,a+∇ f ⋆(x)〉− f ⋆(x+ y)+ f ⋆(x)

= sup
z

〈z− x,a+∇ f ⋆(x)〉− f ⋆(z)+ f ⋆(x)

= f (a+∇ f ⋆(x))+ f ⋆(x)−〈x,a+∇ f ⋆(x)〉

where we have used that f ⋆⋆ = f , in the last step. Denote u = ∇ f ⋆(x). From the equality in Fenchel-

Young (e.g., Shalev-Shwartz and Singer, 2008, Lemma 17) we obtain that 〈x,u〉= f ⋆(x)+ f (u) and

thus

g⋆(a) = f (a+u)− f (u)−〈x,a〉 .
Combining with g⋆(a)≥ 1

2
‖a‖2, we have

f (a+u)− f (u)−〈x,a〉 ≥ 1

2
‖a‖2 , (4)

which holds for all a,x, with u = ∇ f ⋆(x).
Now let us prove that for any point u′ in the relative interior of the domain of f that if x ∈ ∂ f (u′)

then u′ = ∇ f ⋆(x). Let u := ∇ f ⋆(x) and we must show that u′ = u. By Fenchel-Young, we have that

〈x,u′〉= f ⋆(x)+ f (u′), and, again by Fenchel-Young (and f ⋆⋆ = f ), we have 〈x,u〉= f ⋆(x)+ f (u).
We can now apply (4) to obtain:

0 = 〈x,u〉− f (u)−
(〈

x,u′
〉
− f (u′)

)
,

= f (u′)− f (u)−
〈
x,u′−u

〉
≥ 1

2
‖u′−u‖2 ,

which implies that u′ = ∇ f ⋆(x).
Next, let u1,u2 be two points in the relative interior of the domain of f , let α ∈ (0,1), and let

u=αu1+(1−α)u2. Let x∈ ∂ f (u) (which is non-empty3). We have that u=∇ f ⋆(x), by the previous

argument. Now we are able to apply (4) twice, once with a = u1−u and once with a = u2−u (and

both with x) to obtain

f (u1)− f (u)−〈x,u1−u〉 ≥ 1

2
‖u1−u‖2

f (u2)− f (u)−〈x,u2−u〉 ≥ 1

2
‖u2−u‖2 .

Finally, summing up the above two equations with coefficients α and 1−α we obtain that f is

strongly convex.

3. The set ∂ f (u) is not empty for all u in the relative interior of the domain of f . See the relative max formula in (Borwein

and Lewis, 2006, page 42) or (Rockafellar, 1970, page 253). If u is not in the interior of f , then ∂ f (u) is empty. But,

a function is defined to be essentially strictly convex if it is strictly convex on any subset of {u : ∂ f (u) 6= /0}. The last

set is called the domain of ∂ f and it contains the relative interior of the domain of f , so we are fine here.
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B.2 Proof of Theorem 13

Note that an equivalent definition of σ-smoothness of a function f w.r.t. a norm ‖ · ‖ is that, for all

x,y and α ∈ [0,1], we have

f (αx+(1−α)y)≥ α f (x)+(1−α) f (y)− 1

2
σα(1−α)‖x− y‖2 .

Let X,Y ∈ R
m×n be arbitrary matrices with columns Xi and Yi respectively. We need to prove

‖(1−α)X+αY‖2
Ψ,Φ ≥ α‖X‖2

Ψ,Φ +(1−α)‖Y‖2
Ψ,Φ−

1

2
(σ1 +σ2)α(1−α)‖X−Y‖2

Ψ,Φ . (5)

Using smoothness of Ψ and that Φ is a Q-norm, we have,

‖(1−α)X+αY‖2
Ψ,Φ = (Φ2 ◦√)(. . . ,Ψ2(αXi +(1−α)Yi), . . .)

≥ (Φ2 ◦√)(. . . ,αΨ2(Xi)+(1−α)Ψ2(Yi)

− 1

2
σ1α(1−α)Ψ2(Xi−Yi), . . .)

≥ (Φ2 ◦√)(. . . ,αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

− 1

2
σ1α(1−α)(Φ2 ◦√)(. . . ,Ψ2(Xi−Yi), . . .)

= Φ2(. . . ,
√

αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

− 1

2
σ1α(1−α)‖X−Y‖2

Ψ,Φ . (6)

Now, we use that, for any x,y≥ 0 and α ∈ [0,1], we have
√

αx2 +(1−α)y2 ≥ αx+(1−α)y. Thus,

we have

Φ2(. . . ,
√

αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

≥Φ2(. . . ,αΨ(Xi)+(1−α)Ψ(Yi), . . .)

≥ αΦ2(. . . ,Ψ(Xi), . . .)+(1−α)Φ2(. . . ,Ψ(Yi), . . .)

− 1

2
σ2α(1−α)Φ2(. . . ,Ψ(Xi)−Ψ(Yi), . . .)

≥ α‖X‖2
Ψ,Φ +(1−α)‖Y‖2

Ψ,Φ−
1

2
σ2α(1−α)Φ2(. . . ,Ψ(Xi−Yi), . . .)

= α‖X‖2
Ψ,Φ +(1−α)‖Y‖2

Ψ,Φ−
1

2
σ2α(1−α)‖X−Y‖2

Ψ,Φ .

Plugging this into (6) proves (5).

B.3 Proof of Theorem 25

Let H j be the RKHS of K j, H j =
{

∑l
i=1 αiK j(x̃i, ·) : l > 0, x̃i ∈ X , α ∈ R

l
}

equipped with the inner

product 〈
l

∑
i=1

αiK j(x̃i, ·),
m

∑
j=1

α′iK j(x̃
′
j, ·)

〉

H j

= ∑
i, j

αiα
′
jK j(x̃i, x̃

′
j).
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Consider the space H = H1× . . .×Hk equipped with the inner product

〈~u,~v〉 :=
k

∑
i=1

〈ui,vi〉Hi
.

For ~w ∈H , let ‖ · ‖2,1 be the norm defined by

‖~w‖2,1 =
k

∑
i=1

‖wi‖Hi
.

It is easy to verify that FK +
c
⊆ Fr where

Fr := {x 7→
〈
~w,~φ(x)

〉
: ~w ∈H , ‖~w‖2,1 ≤ 1/γ} ,

and
~φ(x) = (K1(x, ·), . . . ,Kk(x, ·)) ∈H .

Since ‖K j(x, ·)‖H j
≤
√

B, we also have ‖~φ(x)‖2,s ≤ k1/s
√

B for any x ∈ X . The claim now follows

directly from the results we derived in Section 2.
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