
Mind the Duality Gap:
Logarithmic regret algorithms for online optimization

Sham M. Kakade
Toyota Technological Institute at Chicago

sham@tti-c.org

Shai Shalev-Shwartz
Toyota Technological Institute at Chicago

shai@tti-c.org

Abstract

We describe a primal-dual framework for the design and analysis of online
strongly convex optimization algorithms. Our framework yields the tightest
known logarithmic regret bounds for Follow-The-Leader and for the gradient de-
scent algorithm proposed in Hazan et al. [2006]. We then show that one can inter-
polate between these two extreme cases. In particular, we derive a new algorithm
that shares the computational simplicity of gradient descent but achieves lower
regret in many practical situations. Finally, we further extend our framework for
generalized strongly convex functions.

1 Introduction

In recent years, online regret minimizing algorithms have become widely used and empirically suc-
cessful algorithms for many machine learning problems. Notable examples include efficient learn-
ing algorithms for structured prediction and ranking problems [Collins, 2002, Crammer et al., 2006].
Most of these empirically successful algorithms are based on algorithms which are tailored to gen-
eral convex functions, whose regret is O(

√
T). Rather recently, there is a growing body of work

providing online algorithms for strongly convex loss functions, with regret guarantees that are only
O(log T). These algorithms have potential to be highly applicable since many machine learning
optimization problems are in fact strongly convex — either with strongly convex loss functions (e.g.
log loss, square loss) or, indirectly, via strongly convex regularizers (e.g. L2 or KL based regular-
ization). Note that in this later case, the loss function itself may only be just convex but a strongly
convex regularizer effectively makes this a strongly convex optimization problem (e.g. the SVM op-
timization problem uses the hinge loss with L2 regularization). The aim of this paper is to provide
a template for deriving a wider class of regret-minimizing algorithms for online strongly convex
programming.

Online convex optimization takes place in a sequence of consecutive rounds. At each round, the
learner predicts a vector wt ∈ S ⊂ Rn, and the environment responds with a convex loss function,
`t : S → R. The goal of the learner is to minimize the difference between his cumulative loss and
the cumulative loss of the optimal fixed vector,

∑T
t=1 `t(wt)−minw∈S

∑T
t=1 `t(w). This is termed

‘regret’ since it measures how ‘sorry’ the learner is, in retrospect, not to have predicted the optimal
vector.

Roughly speaking, the family of regret minimizing algorithms (for general convex functions) can be
seen as varying on two axes, the ‘style’ and the ‘aggressiveness’ of the update. In addition to online
algorithms’ relative simplicity, the empirical successes are also due to having these two knobs to tune
for the problem at hand (which determine the nature of the regret bound). By style, we mean updates
which favor either rotational invariance (such as gradient descent like update rules) or sparsity (like
the multiplicative updates). Of course there is a much richer family here, including the Lp updates.
By the aggressiveness of the update, we mean how much the algorithm moves its decision to be
consistent with most recent loss functions. For example, the preceptron algorithm makes no update

1

when there is no error. In contrast, there is a family of algorithms which more aggressively update
the loss when there is a margin mistake. These algorithms are shown to have improved performance
(see for example the experimental study in Shalev-Shwartz and Singer [2007b]).

While historically much of the analysis of these algorithms have been done on a case by case basis,
in retrospect, the proof techniques have become somewhat boilerplate, which has lead to growing
body of work to unify these analyses (see Cesa-Bianchi and Lugosi [2006] for review). Perhaps the
most unified view of these algorithms is the ‘primal-dual’ framework of Shalev-Shwartz and Singer
[2006], Shalev-Shwartz [2007], for which the gamut of these algorithms can be largely viewed as
special cases. Two aspects are central in providing this unification. First, the framework works with
a complexity function, which determines the style of algorithm and the nature of the regret guarantee
(If this function is the L2 norm, then one obtains gradient like updates, and if this function is the KL-
distance, then one obtains multiplicative updates). Second, the algorithm maintains both “primal”
and “dual” variables. Here, the the primal objective function is

∑T
t=1 `t(w) (where `t is the loss

function provided at round t), and one can construct a dual objective function Dt(·), which only
depends on the loss functions `1, `2, . . . `t−1. The algorithm works by incrementally increasing the
dual objective value (in an online manner), which can be done since eachDt is only a function of the
previous loss functions. By weak duality, this can be seen as decreasing the duality gap. The level
of aggressiveness is seen to be how fast the algorithm is attempting to increase the dual objective
value.

This paper focuses on extending the duality framework for online convex programming to the case
of strongly convex functions. This analysis provides a more unified and intuitive view of the extant
algorithms for online strongly convex programming. An important observation we make is that any
σ-strongly convex loss function can be rewritten as `i(w) = f(w) + gi(w), where f is a fixed σ-
strongly convex function (i.e. f does not depend on i), and gi is a convex function. Therefore, after t
online rounds, the amount of intrinsic strong convexity we have in the primal objective

∑t
i=1 `t(w)

is at least σ t. In particular, this explains the learning rate of 1
σ t proposed in the gradient descent

algorithm of Hazan et al. [2006]. Indeed, we show that our framework includes the gradient descent
algorithm of Hazan et al. [2006] as an important special case, in which the aggressiveness level
is minimal. At the most aggressive end, our framework yields the Follow-The-Leader algorithm.
Furthermore, the template algorithm serves as a vehicle for deriving new algorithms (which enjoy
logarithmic regret guarantees).

The remainder of the paper is outlined as follows. We first provide background on convex duality. As
a warmup, in Section 3, we present an intuitive primal-dual analysis of Follow-The-Leader (FTL),
when f is the Euclidean norm. This naturally leads to a more general primal-dual algorithm (for
which FTL is a special case), which we present in Section 4. Next, we further generalize our
algorithmic framework to include strongly convex complexity functions f with respect to arbitrary
norms ‖ · ‖. We note that the introduction of a complexity function was already provided in Shalev-
Shwartz and Singer [2007a], but the analysis is rather specialized and does not have a knob which
can tune the aggressiveness of the algorithm. Finally, in Sec. 6 we conclude with a side-by-side
comparison of our algorithmic framework for strongly convex functions and the framework for
(non-strongly) convex functions given in Shalev-Shwartz [2007].

2 Mathematical Background

We denote scalars with lower case letters (e.g. w and λ), and vectors with bold face letters (e.g. w
and λ). The inner product between vectors x and w is denoted by 〈x,w〉. To simplify our notation,
given a sequence of vectors λ1, . . . ,λt or a sequence of scalars σ1, . . . , σt we use the shorthand

λ1:t =
t∑

i=1

λi and σ1:t =
t∑

i=1

σi .

Sets are designated by upper case letters (e.g. S). The set of non-negative real numbers is denoted
by R+. For any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k]. A norm of a vector x is
denoted by ‖x‖. The dual norm is defined as ‖λ‖? = sup{〈x,λ〉 : ‖x‖ ≤ 1}. For example, the
Euclidean norm, ‖x‖2 = (〈x,x〉)1/2 is dual to itself and the L1 norm, ‖x‖1 =

∑
i |xi|, is dual to

the L∞ norm, ‖x‖∞ = maxi |xi|.

2

FOR t = 1, 2, . . . , T :
Define wt = − 1

σ1:(t−1)
λt

1:(t−1)

Receive a function `t(w) = σt
2
‖w‖2 + gt(w) and suffer loss `t(wt)

Update λt+1
1 , . . . , λt+1

t s.t. the following holds

(λt+1
1 , . . . , λt+1

t) ∈ argmax
λ1,...,λt

Dt+1(λ1, . . . , λt)

Figure 1: A primal-dual view of Follow-the-Leader. Here the algorithm’s decision wt is the best decision
with respect to the previous losses. This presentation exposes the implicit role of the dual variables. Slightly
abusing notation, λ1:0 = 0, so that w1 = 0. See text.

We next recall a few definitions from convex analysis. A function f is σ-strongly convex if

f(αu + (1− α)v) ≤ αf(u) + (1− α)f(v)− σ

2
α (1− α) ‖u− v‖2

2 .

In Sec. 5 we generalize the above definition to arbitrary norms. If a function f is σ-strongly convex
then the function g(w) = f(w)− σ

2 ‖w‖
2 is convex.

The Fenchel conjugate of a function f : S → R is defined as

f?(θ) = sup
w∈S

〈w,θ〉 − f(w) .

If f is closed and convex, then the Fenchel conjugate of f? is f itself (a function is closed if for
all α > 0 the level set {w : f(w) ≤ α} is a closed set). It is straightforward to verify that the
function f(w) is conjugate to itself. The definition of f? also implies that for c > 0 we have
(c f)?(θ) = c f?(θ/c).

A vector λ is a sub-gradient of a function f at w if for all w′ ∈ S, we have that f(w′) − f(w) ≥
〈w′ −w,λ〉. The differential set of f at w, denoted ∂f(w), is the set of all sub-gradients of f at
w. If f is differentiable at w, then ∂f(w) consists of a single vector which amounts to the gradient
of f at w and is denoted by ∇f(w).

The Fenchel-Young inequality states that for any w and θ we have that f(w) + f?(θ) ≥ 〈w,θ〉.
Sub-gradients play an important role in the definition of the Fenchel conjugate. In particular, the
following lemma, whose proof can be found in Borwein and Lewis [2006], states that if λ ∈ ∂f(w)
then the Fenchel-Young inequality holds with equality.

Lemma 1 Let f be a closed and convex function and let ∂f(w′) be its differential set at w′. Then,
for all λ′ ∈ ∂f(w′), we have f(w′) + f?(λ′) =

〈
λ′,w′〉 .

We make use of the following variant of Fenchel duality (see the appendix for more details):

max
λ1,...,λT

−f?(−
T∑

t=1

λt)−
T∑

t=1

g?
t (λt) ≤ min

w
f(w) +

T∑
t=1

gt(w) . (1)

3 Warmup: A Primal-Dual View of Follow-The-Leader

In this section, we provide a dual analysis for the FTL algorithm. The dual view of FTL will help
us to derive a family of logarithmic regret algorithms for online convex optimization with strongly
convex functions.

Recall that FTL algorithm is defined as follows:

wt = argmin
w

t−1∑
i=1

`i(w) . (2)

For each i ∈ [t − 1] define gi(w) = `i(w) − σi

2 ‖w‖
2, where σi is the largest scalar such that gi is

still a convex function. The assumption that `i is σ-strongly convex guarantees that σi ≥ σ. We can

3

therefore rewrite the objective function on the right-hand side of Eq. (2) as

Pt(w) =
σ1:(t−1)

2
‖w‖2 +

t−1∑
i=1

gi(w) , (3)

(recall that σ1:(t−1) =
∑t−1

i=1 σi). The Fenchel dual optimization problem (see Sec. 2) is to maximize
the following dual objective function

Dt(λ1, . . . ,λt−1) = − 1
2 σ1:(t−1)

‖λ1:(t−1)‖2 −
t−1∑
i=1

g?
i (λi) . (4)

Let (λt
1, . . . ,λ

t
t−1) be the maximizer of Dt. The relation between the optimal dual variables and

the optimal primal vector is given by (see again Sec. 2)

wt = − 1
σ1:(t−1)

λt
1:(t−1) . (5)

Throughout this section we assume that strong duality holds (i.e. Eq. (1) holds with equality). See
the appendix for sufficient conditions. In particular, under this assumption, we have that the above
setting for wt is in fact a minimizer of the primal objective, since (λt

1, . . . ,λ
t
t−1) maximizes the dual

objective (see the appendix). The primal-dual view of Follow-the-Leader is presented in Figure 1.

Denote
∆t = Dt+1(λt+1

1 , . . . ,λt+1
t)−Dt(λt

1, . . . ,λ
t
t−1) . (6)

To analyze the FTL algorithm, we first note that (by strong duality)
T∑

t=1

∆t = DT+1(λT+1
1 , . . . ,λT+1

T) = min
w

PT+1(w) = min
w

T∑
t=1

`t(w) . (7)

Second, the fact that (λt+1
1 , . . . ,λt+1

t) is the maximizer of Dt+1 implies that for any λ we have

∆t ≥ Dt+1(λt
1, . . . ,λ

t
t−1,λ)−Dt(λt

1, . . . ,λ
t
t−1) . (8)

The following central lemma shows that there exists λ such that the right-hand side of the above is
sufficiently large.

Lemma 2 Let (λ1, . . . ,λt−1) be an arbitrary sequence of vectors. Denote w = − 1
σ1:(t−1)

λ1:(t−1),
let v ∈ ∂`t(w), and let λ = v − σtw. Then, λ ∈ ∂gt(w) and

Dt+1(λ1, . . . ,λt−1,λ)−Dt(λ1, . . . ,λt−1) = `t(w)− ‖v‖2

2 σ1:t
.

Proof We prove the lemma for the case t > 1. The case t = 1 can be proved simi-
larly. Since `t(w) = σt

2 ‖w‖
2 + gt(w) and v ∈ ∂`t(w) we have that λ ∈ ∂gt(w). Denote

∆̄t = Dt+1(λ1, . . . ,λt−1,λ)−Dt(λ1, . . . ,λt−1). Simple algebraic manipulations yield

∆̄t = − 1
2σ1:t

∥∥λ1:(t−1) + λ
∥∥2 +

1
2σ1:(t−1)

∥∥λ1:(t−1)

∥∥2 − g?
t (λ)

=
‖λ1:(t−1)‖2

2

(
1

σ1:(t−1)
− 1

σ1:t

)
+ 〈w,λ〉

σ1:(t−1)

σ1:t
− ‖λ‖2

2σ1:t
− g?

t (λ)

=
σt‖w‖2

2

(
1− σt

σ1:t

)
+ 〈w,λ〉

σ1:(t−1)

σ1:t
− ‖λ‖2

2σ1:t
− g?

t (λ)

=
σt ‖w‖2

2
+ 〈w,λ〉 − g?

t (λ)︸ ︷︷ ︸
A

−
(

σ2
t ‖w‖2

2σ1:t
+

σt 〈w,λ〉
σ1:t

+
‖λ‖2

2σ1:t

)
︸ ︷︷ ︸

B

Since λ ∈ ∂gt(w), Lemma 1 thus implies that 〈w,λ〉 − g?
t (λ) = gt(w). Therefore, A = `t(w).

Next, we note that B = ‖σtw+λ‖2
2σ1:t

. We have thus shown that ∆̄t = `t(w)− ‖σtw+λ‖2
2σ1:t

. Plugging
the definition of λ into the above we conclude our proof.

Combining Lemma 2 with Eq. (7) and Eq. (8) we obtain the following:

4

FOR t = 1, 2, . . . , T :
Define wt = − 1

σ1:(t−1)
λt

1:(t−1)

Receive a function `t(w) = σt
2
‖w‖2 + gt(w) and suffer loss `t(wt)

Update λt+1
1 , . . . , λt+1

t s.t. the following holds

∃λt ∈ ∂gt(wt), s.t. Dt+1(λ
t+1
1 , . . . , λt+1

t) ≥ Dt+1(λ
t
1, . . . , λ

t
t−1, λt)

Figure 2: A primal-dual algorithmic framework for online convex optimization. Again, w1 = 0.

Corollary 1 Let `1, . . . , `T be a sequence of functions such that for all t ∈ [T], `t is σt-strongly
convex. Assume that the FTL algorithm runs on this sequence and for each t ∈ [T], let vt be in
∂`t(wt). Then,

T∑
t=1

`t(wt)−min
w

T∑
t=1

`t(w) ≤ 1
2

T∑
t=1

‖vt‖2

σ1:t
(9)

Furthermore, let L = maxt ‖vt‖ and assume that for all t ∈ [T], σt ≥ σ. Then, the regret is
bounded by L2

2σ (log(T) + 1).

If we are dealing with the square loss `t(w) = ‖w − µt‖2
2 (where nature chooses µt), then it is

straightforward to see that Eq. (8) holds with equality, and this leads to the previous regret bound
holding with equality. This equality is the underlying reason that the FTL strategy is a minimax
strategy (See Abernethy et al. [2008] for a proof of this claim).

4 A Primal-Dual Algorithm for Online Strongly Convex Optimization

In the previous section, we provided a dual analysis for FTL. Here, we extend the analysis and derive
a more general algorithmic framework for online optimization.

We start by examining the analysis of the FTL algorithm. We first make the important observation
that Lemma 2 is not specific to the FTL algorithm and in fact holds for any configuration of dual
variables. Consider an arbitrary sequence of dual variables: (λ2

1), (λ
3
1,λ

3
2), . . . , (λ

T+1
1 , . . . ,λT+1

T)
and denote ∆t as in Eq. (6). Using weak duality, we can replace the equality in Eq. (7) with the
following inequality that holds for any sequence of dual variables:

T∑
t=1

∆t = DT+1(λT+1
1 , . . . ,λT+1

T) ≤ min
w

PT+1(w) = min
w

T∑
t=1

`t(w) . (10)

A summary of the algorithmic framework is given in Fig. 2.

The following theorem, a direct corollary of the previous equation and Lemma 2, shows that all
instances of the framework achieve logarithmic regret.

Theorem 1 Let `1, . . . , `T be a sequence of functions such that for all t ∈ [T], `t is σt-strongly
convex. Then, any algorithm that can be derived from Fig. 2 satisfies

T∑
t=1

`t(wt)−min
w

T∑
t=1

`t(w) ≤ 1
2

T∑
t=1

‖vt‖2

σ1:t
(11)

where vt ∈ ∂`t(wt).

Proof Let ∆t be as defined in Eq. (6). The last condition in the algorithm implies that

∆t ≥ Dt+1(λt
1, . . . ,λ

t
t−1,vt − σtwt)−Dt(λt

1, . . . ,λ
t
t−1) .

The proof follows directly by combining the above with Eq. (10) and Lemma 2.

We conclude this section by deriving several algorithms from the framework.

5

Example 1 (Follow-The-Leader) As we have shown in Sec. 3, the FTL algorithm (Fig. 1) is equiva-
lent to optimizing the dual variables at each online round. This update clearly satisfies the condition
in Fig. 2 and is therefore a special case.

Example 2 (Gradient-Descent) Following Hazan et al. [2006], Bartlett et al. [2007] suggested the
following update rule for differentiable strongly convex function

wt+1 = wt −
1

σ1:t
∇`t(wt) . (12)

Using a simple inductive argument, it is possible to show that the above update rule is equivalent to
the following update rule of the dual variables

(λt+1
1 , . . . ,λt+1

t) = (λt
1, . . . ,λ

t
t−1,∇`t(wt)− σtwt) . (13)

Clearly, this update rule satisfies the condition in Fig. 2. Therefore our framework encompasses this
algorithm as a special case.

Example 3 (Online Coordinate-Dual-Ascent) The FTL and the Gradient-Descent updates are
two extreme cases of our algorithmic framework. The former makes the largest possible increase of
the dual while the latter makes the smallest possible increase that still satisfies the sufficient dual
increase requirement. Intuitively, the FTL method should have smaller regret as it consumes more
of its potential earlier in the optimization process. However, its computational complexity is large
as it requires a full blown optimization procedure at each online round. A possible compromise is
to fully optimize the dual objective but only with respect to a small number of dual variables. In the
extreme case, we optimize only with respect to the last dual variable. Formally, we let

λt+1
i =

{
λt

i if i < t

argmax
λt

Dt+1(λt
1, . . . ,λ

t
t−1,λt) if i = t

Clearly, the above update satisfies the requirement in Fig. 2 and therefore enjoys a logarithmic regret
bound. The computational complexity of performing this update is often small as we optimize over
a single dual vector. Occasionally, it is possible to obtain a closed-form solution of the optimization
problem and in these cases the computational complexity of the coordinate-dual-ascent update is
identical to that of the gradient-descent method.

5 Generalized strongly convex functions

In this section, we extend our algorithmic framework to deal with generalized strongly convex func-
tions. We first need the following generalized definition of strong convexity.

Definition 1 A continuous function f is σ-strongly convex over a convex set S with respect to a
norm ‖ · ‖ if S is contained in the domain of f and for all v,u ∈ S and α ∈ [0, 1] we have

f(αv + (1− α)u) ≤ α f(v) + (1− α) f(u)− σ

2
α (1− α) ‖v − u‖2 . (14)

It is straightforward to show that the function f(w) = 1
2‖w‖

2
2 is strongly convex with respect to the

Euclidean norm. Less trivial examples are given below.

Example 4 The function f(w) =
∑n

i=1 wi log(wi/
1
n) is strongly convex over the probability sim-

plex, S = {w ∈ Rn
+ : ‖w‖1 = 1}, with respect to the L1 norm. Its conjugate function is

f?(θ) = log(1
n

∑n
i=1 exp(θi)).

Example 5 For q ∈ (1, 2), the function f(w) = 1
2(q−1)‖w‖

2
q is strongly convex over S = Rn with

respect to the Lq norm. Its conjugate function is f?(θ) = 1
2(p−1)‖θ‖

2
p, where p = (1− 1/q)−1.

For proofs, see for example Shalev-Shwartz [2007]. In the appendix, we list several important
properties of strongly convex functions. In particular, the Fenchel conjugate of a strongly convex
function is differentiable.

6

INPUT: A strongly convex function f

FOR t = 1, 2, . . . , T :

1) Define wt = ∇f?

„
−

λt
1:(t−1)√

t

«
2) Receive a function `t

3) Suffer loss `t(wt)

4) Update λt+1
1 , . . . , λt+1

t s.t. there

exists λt ∈ ∂lt(wt) with

Dt+1(λ
t+1
1 , . . . , λt+1

t) ≥

Dt+1(λ
t
1, . . . , λ

t
t−1, λt)

INPUT: A σ-strongly convex function f

FOR t = 1, 2, . . . , T :

1) Define wt = ∇f?

„
−

λt
1:(t−1)
σ1:t

«
2) Receive a function `t = σf + gt

3) Suffer loss `t(wt)

4) Update λt+1
1 , . . . , λt+1

t s.t. there

exists λt ∈ ∂gt(wt) with

Dt+1(λ
t+1
1 , . . . , λt+1

t) ≥

Dt+1(λ
t
1, . . . , λ

t
t−1, λt)

Figure 3: Primal-dual template algorithms for general online convex optimization (left) and online strongly
convex optimization (right). Here a1:t =

Pt
i=1 ai, and for notational convenient, we implicitly assume that

a1:0 = 0. See text for description.

Consider the case where for all t, `t can be written as σtf + gt where f is 1-strongly convex with
respect to some norm ‖ · ‖ and gt is a convex function. We also make the simplifying assumption
that σt is known to the forecaster before he defines wt.

For each round t, we now define the primal objective to be

Pt(w) = σ1:(t−1)f(w) +
t−1∑
i=1

gi(w) . (15)

The dual objective is (see again Sec. 2)

Dt(λ1, . . . ,λt−1) = − σ1:(t−1)f
?
(
−λ1:(t−1)

σ1:(t−1)

)
−

t−1∑
i=1

g?
i (λi) . (16)

An algorithmic framework for online optimization in the presence of general strongly convex func-
tions is given on the right-hand side of Fig. 3.

The following theorem provides a logarithmic regret bound for the algorithmic framework given on
the right-hand side of Fig. 3.

Theorem 2 Let `1, . . . , `T be a sequence of functions such that for all t ∈ [T], `t = σtf + gt for f
being strongly convex w.r.t. a norm ‖ · ‖ and gt is a convex function. Then, any algorithm that can
be derived from Fig. 3 (right) satisfies

T∑
t=1

`t(wt)−min
w

T∑
t=1

`t(w) ≤ 1
2

T∑
t=1

‖vt‖2
?

σ1:t
, (17)

where vt ∈ ∂gt(wt) and ‖ · ‖? is the norm dual to ‖ · ‖.

The proof of the theorem is given in Sec. B

6 Summary

In this paper, we extended the primal-dual algorithmic framework for general convex functions from
Shalev-Shwartz and Singer [2006], Shalev-Shwartz [2007] to strongly convex functions. The tem-
plate algorithms are outlined in Fig. 3. The left algorithm is the primal-dual algorithm for general
convex functions from Shalev-Shwartz and Singer [2006], Shalev-Shwartz [2007]. Here, f is the
complexity function, (λt

1, . . . ,λ
t
t) are the dual variables at time t, and Dt(·) is the dual objective

7

function at time t (which is a lower bound on primal value). The function ∇f? is the gradient of the
conjugate function of f , which can be viewed as a projection of the dual variables back into the pri-
mal space. At the least aggressive extreme, in order to obtain

√
T regret, it is sufficient to set λi

t (for
all i) to be a subgradient of the loss ∂`t(wt). We then recover an online ‘mirror descent’ algorithm
[Beck and Teboulle, 2003, Grove et al., 2001, Kivinen and Warmuth, 1997], which specializes to
gradient descent when f is the squared 2-norm or the exponentiated gradient descent algorithm when
f is the relative entropy. At the most aggressive extreme, where Dt is maximized at each round, we
have ‘Follow the Regularized Leader’, which is wt = arg minw

∑t−1
i=1 `i(w) +

√
t f(w). Inter-

mediate algorithms can also be devised such as the ‘passive-aggressive’ algorithms [Crammer et al.,
2006, Shalev-Shwartz, 2007].

The right algorithm in Figure 3 is our new contribution for strongly convex functions. Any σ-
strongly convex loss function can be decomposed into `t = σf + gt, where gt is convex. The
algorithm for strongly convex functions is different in two ways. First, the effective learning rate is
now 1

σ1:t
rather than 1√

t
(see Step 1 in both algorithms). Second, more subtly, the condition on the

dual variables (in Step 4) is only determined by the subgradient of gt, rather than the subgradient of
`t. At the most aggressive end of the spectrum, where Dt is maximized at each round, we have the
‘Follow the Leader’ (FTL) algorithm: wt = arg minw

∑t−1
i=1 `i(w). At the least aggressive end,

we have the gradient descent algorithm of Hazan et al. [2006] (which uses learning rate 1
σ1:t

). Fur-
thermore, we provide algorithms which lie in between these two extremes — it is these algorithms
which have the potential for most practical impact.

Empirical observations suggest that algorithms which most aggressively close the duality gap tend
to perform most favorably [Crammer et al., 2006, Shalev-Shwartz and Singer, 2007b]. However, at
the FTL extreme, this is often computationally prohibitive to implement (as one must solve a full
blown optimization problem at each round). Our template algorithm suggests a natural compromise,
which is to optimize the dual objective but only with respect to a small number of dual variables
(say the most current dual variable) — we coin this algorithm online coordinate-dual-ascent. In
fact, it is sometimes possible to obtain a closed-form solution of this optimization problem, so that
the computational complexity of the coordinate-dual-ascent update is identical to that of a vanilla
gradient-descent method. This variant update still enjoys a logarithmic regret bound.

References
J. Abernethy, P. Bartlett, A. Rakhlin, and A. Tewari. Optimal strategies and minimax lower bounds for online convex games. In Proceedings of the Nineteenth Annual

Conference on Computational Learning Theory, 2008.

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In Advances in Neural Information Processing Systems 21, 2007.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167–175, 2003.

J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2006.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Conference on Empirical Methods in
Natural Language Processing, 2002.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive algorithms. Journal of Machine Learning Research, 7:551–585, Mar
2006.

A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for linear discriminant updates. Machine Learning, 43(3):173–210, 2001.

E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online convex optimization. In Proceedings of the Nineteenth Annual Conference on
Computational Learning Theory, 2006.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1–64, January 1997.

S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The Hebrew University, 2007.

S. Shalev-Shwartz and Y. Singer. Convex repeated games and Fenchel duality. In Advances in Neural Information Processing Systems 20, 2006.

S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strictly convex repeated games. Technical report, The Hebrew University, 2007a. Available at
http://www.cs.huji.ac.il/∼shais.

S. Shalev-Shwartz and Y. Singer. A unified algorithmic approach for efficient online label ranking. In aistat07, 2007b.

8

A Fenchel duality

Consider the optimization problem

inf
w∈S

(
f(w) +

T∑
t=1

gt(w)

)
.

An equivalent problem is

inf
w0,w1,...,wT

(
f(w0) +

T∑
t=1

gt(wt)

)
s.t. w0 ∈ S and ∀t ∈ [T], wt = w0 . (18)

Introducing T vectors λ1, . . . ,λT , each λt ∈ Rn is a vector of Lagrange multipliers for the equality
constraint wt = w0, we obtain the following Lagrangian

L(w0,w1, . . . ,wT ,λ1, . . . ,λT) = f(w0) +
T∑

t=1

gt(wt) +
T∑

t=1

〈λt,w0 −wt〉 .

The dual problem is the task of maximizing the following dual objective value,

D(λ1, . . . ,λT) = inf
w0∈S,w1,...,wT

L(w0,w1, . . . ,wT ,λ1, . . . ,λT)

= − sup
w0∈S

(〈
w0,−

T∑
t=1

λt

〉
− f(w0)

)
−

T∑
t=1

sup
wt

(〈wt,λt〉 − gt(wt))

= −f?

(
−

T∑
t=1

λt

)
−

T∑
t=1

g?
t (λt) ,

where f?, g?
1 , . . . , g?

T are the Fenchel conjugate functions of f, g1, . . . , gT . Therefore, the general-
ized Fenchel dual problem is

sup
λ1,...,λT

− f?

(
−

T∑
t=1

λt

)
−

T∑
t=1

g?
t (λt) . (19)

Note that when T = 1 the above duality is the so-called Fenchel duality [Borwein and Lewis, 2006].

The weak duality theorem tells us that the primal objective upper bounds the dual objective:

sup
λ1,...,λT

−f?(−
T∑

t=1

λt)−
T∑

t=1

g?(λt) ≤ inf
w∈S

f(w) +
T∑

t=1

gt(w) .

A sufficient condition for equality to hold (i.e. strong duality) is that f is a strongly convex function,
g1, . . . , gT are convex functions, and the intersection of the domains of g1, . . . , gT is polyhedral.

Assume that strong duality holds, let (λ1, . . . ,λT) be a maximizer of the dual objective function,
and let (w?

0, . . . ,w
?
T) be a maximizer of the problem given in Eq. (18). Then, optimality conditions

imply that
(w?

0, . . . ,w
?
T) = argmin

w0,...,wT

L(w0, . . . ,wT ,λ1, . . . ,λT) .

See for example Boyd and Vandenberghe [2004] Section 5.5.2. In particular, the above implies that

w?
0 = argmax

w0∈S

〈
w0,−

T∑
t=1

λt

〉
− f(w0) = ∇f?(−λ1:T) ,

where in the last equality we used Lemma 1. Since w?
0 is also a minimizer of our original problem,

we obtain the primal-dual link function

w = ∇f?(−λ1:T) .

9

B Proof of Thm. 2

We first use the following properties of the Fenchel conjugate of strongly convex functions. The
proof of this lemma follows from Lemma 18 in Shalev-Shwartz [2007].

Lemma 3 Let f be a σ-strongly convex function over S with respect to a norm ‖ · ‖. Let f? be the
Fenchel conjugate of f . Then, f? is differentiable and for all θ1,θ2 ∈ Rn, we have

f?(θ1 + θ2)− f?(θ1) ≤ 〈∇f?(θ1),θ2〉+
1
2σ
‖θ2‖2

?

We also need the following technical lemma.

Lemma 4 Assume f strongly convex, let a, b ≥ 0, and let wb = ∇f?(θ/b). Then,

af?(θ/a)− bf?(θ/b) ≥ (b− a)f(w)

Proof Since f is strongly convex we know that f? is differentiable. Using Lemma 1 we have

f?(θ/b) = 〈wb,θ/b〉 − f(wb)

The definition of f? now implies that

f?(θ/a) = max
w

〈w,θ/a〉 − f(w) ≥ 〈wb,θ/a〉 − f(wb)

Therefore,
af?(θ/a)− bf?(θ/b) ≥ − (a− b)f(wb)

which concludes our proof.

Next, we show that the gradient descend update rule yields a sufficient increase of the dual objective.

Lemma 5 Let (λ1, . . . ,λt−1) be an arbitrary sequence of vectors. Denote w =
∇f?

(
− 1

σ1:t
λ1:(t−1)

)
and let λ ∈ ∂gt(w). Then,

Dt+1(λ1, . . . ,λt−1,λ)−Dt(λ1, . . . ,λt−1) ≥ `t(w)− ‖λ‖2
?

2 σ1:t
.

Proof Denote ∆̄t = Dt+1(λ1, . . . ,λt−1,λ) − Dt(λ1, . . . ,λt−1). Since f is strongly convex we
can apply Lemma 3 to get that

∆̄t = −σ1:tf
?
(
−λ1:(t−1)+λ

σ1:t

)
+ σ1:(t−1)f

?
(
−λ1:(t−1)

σ1:(t−1)

)
− g?

t (λ)

≥ −σ1:t

(
f?
(
−λ1:(t−1)

σ1:t

)
− 〈w,λ〉

σ1:t
+ ‖λ‖2?

2(σ1:t)2

)
+ σ1:(t−1)f

?
(
−λ1:(t−1)

σ1:(t−1)

)
− g?

t (λ)

= σ1:(t−1)f
?
(
−λ1:(t−1)

σ1:(t−1)

)
− σ1:tf

?
(
−λ1:(t−1)

σ1:t

)
︸ ︷︷ ︸

A

+ 〈w,λ〉 − g?
t (λ)︸ ︷︷ ︸

B

−‖λ‖
2
?

2σ1:t
.

Since λ ∈ ∂gt(w) we get from Lemma 1 that B = gt(w). Next, we use Lemma 4 and the definition
of w to get that A ≥

(
σ1:t − σ1:(t−1)

)
f(w) = σtf(w). Thus, A + B ≥ σtf(w) + gt(w) = `t(w)

and this concludes our proof.

The proof of Thm. 2 now easily follows.

Proof [of Thm. 2] Denote ∆t = Dt+1(λt+1
1 , . . . ,λt+1

t) − Dt(λt
1, . . . ,λ

t
t−1) and note that

Eq. (10) still holds. The definition of the update in Fig. 3 and Lemma 5 implies that there exists
vt ∈ ∂gt(wt) such that ∆t ≥ `t(wt) − ‖vt‖2?

2σ1:t
. Summing over t and combining with Eq. (10) we

conclude our proof.

10

