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Abstract

In labelling or prediction tasks, a trained
model’s test performance is often based on
the quality of its single-time marginal distri-
butions over labels rather than its joint dis-
tribution over label sequences. We propose
using a new cost function for discriminative
learning that more accurately reflects such
test time conditions. We present an efficient
method to compute the gradient of this cost
for Maximum Entropy Markov Models, Con-
ditional Random Fields, and for an extension
of these models involving hidden states. Our
experimental results show that the new cost
can give significant improvements and that it
provides a novel and effective way of dealing
with the ’label-bias’ problem.

1 Input-Output Markovian Models

Input-output modelling of sequential data is a funda-
mental problem arising in many machine learning ap-
plications, including tracking objects in video streams,
labelling /tagging sections of documents, and identi-
fying motifs or functional regions in amino acid or
nucleotide chains. The problem can often be cast
as one of estimating a “state” or “label” sequence
S = {s1,82,...57} given some observations X =
{01,02,...07}. The labels s; (states) may be missing
at test time only, or both at training and testing time.
In practice, the observations o; are often noncausal fea-
ture vectors, designed by the algorithm implementer,
which summarize a more complex underlying raw data
stream by indicating the presence of certain elements
at the current time as well as in the past/future. The
goal is to model certain aspects of the joint distribu-
tion over states and labels.

In this paper we focus on the supervised learning set-
ting in which the labels are (at least partially) ob-
served at training time and the task at test time is

to predict labels for a given sequence of input obser-
vations. We can either consider online prediction (fil-
tering) in which only the observations up to time ¢
are given or delayed processing (smoothing) in which
all observations are given. In these settings, a density
model of the observations is not required for good per-
formance; indeed it could be a liability. Popular gen-
erative models for sequential data such as the hidden
Markov model (HMM) (see figure 1) are not neces-
sarily appropriate, since they are attempting to solve
the more difficult problem of learning the full distri-
bution and thus often require more training data in
order to achieve good performance. Furthermore, any
such causal directed graphical model that attempts to
capture the full joint distribution over outputs and la-
bels cannot use large, rich, nonlocal features in the
observation stream.

A more appropriate approach is to model only the
conditional distribution of label sequences given the
features. Two related architectures have recently
emerged for capturing this dependence, both of which
allow the use of rich nonlocal features as observations
(see figure 1). McCallum et al. (2000) proposed the
Maximum Entropy Markov Model (MEMM) which
learns an observation-dependent transition from the
previous label to the current label. While MEMMs
are an improvement over the generative HMM, they
suffer a “label-bias” problem, which, crudely speaking,
unfairly favours labels with few successors. In an at-
tempt to address this limitation, Lafferty et al. (2001)
proposed the Conditional Random Field (CRF), an
undirected model which normalizes the probability of
a label sequence globally rather than locally.

Although there has been considerable investigation
into architectures and representations for input-output
sequence models, discussion of appropriate objective
functions for training these architectures has been rela-
tively absent. In this paper we focus on the latter ques-
tion: what should a model capture about the condi-
tional label sequence distribution p(S|X)? We present
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Figure 1. Graphical models for HMM, MEMM, CRF and HRF (described in text).

a new objective function, derive efficient algorithms for
training Markovian models using it, and demonstrate
its improved performance on several tasks. Motivated
by our results, we also introduce an extension to the
CRF model, Hidden Random Fields (HRF).

2 A New Objective Function

In many practical applications, modelling the full con-
ditional distribution of labels given observations might
be unnecessary. For example, when identifying func-
tional regions in nucleotide chains our goal might be
to minimize the total number of errors in labelling.
We might not be interested in modelling correlations
of where these functional regions occur with respect
to each other. Similarly, in visual tracking tasks, pre-
dicting an object’s location accurately at each timestep
may be important even if the sequence of predictions
is not a probable trajectory. In such cases, we are
only interested in the marginal conditional distribu-
tions P(s¢|X) rather than the full joint conditional
distribution P(S|X). Below, we introduce a cost func-
tion that penalizes a model based only on the quality
of these single-time marginal distributions.

The standard objective function for Markovian
sequence-label models is the log probability of the en-
tire label sequence given the observation sequence:

=logp(s{ |X;0) (1)

where we use notation s} = {sy, ..., sy, }. Optimizing
this objective on a training set attempts to maximize
the probability of correctly labelling an entire observa-
tion sequence. The approach at test time is to estimate
the labelling using the most likely state sequence (the
Viterbi path). If this accurately reflects the task at
hand, this cost is appropriate.

Co(8; S, X) =logp(S|X;0)

However, often the real criterion at test time is to max-
imize the expected number of correct labels, or equiva-
lently to minimize the number of mislabellings, even if
very few input sequences are jointly labelled perfectly.
A simple decomposition of Cy above reveals a crucial
assumption underlying why training with the standard
objective function is not appropriate for this criterion.
Using the “chain rule” of conditional probability:

Co(6;S,X) =Y logp(silst ', X36)  (2)
t

We see that models trained using Cj are learning to
predict the next label given the observations and the
correct labels up to that point.

In the spirit of discriminative learning, we consider a
new objective, the average single-time prediction costs,
that is better suited to this goal:

Cy(6;5,X) Zlogp s¢|X;0) (3)
which implicitly integrates over the model’s uncer-

tainly about all the labels before time ¢ when predict-
ing the label at time t.

This cost function is only concerned with the quality of
the marginals p(s¢|X;6). At test time, we generate a
labelling using the “gamma-path”, taken by choosing
the best state from each marginal. Such labellings may
have very poor (or zero) probabilities under the joint
model p(S|X) but will have fewer single-time errors.

Of course, if a model’s joint distribution p(S|X) over
the sequence of labels is correct then this implies its
marginal distributions p(s;|X) are also correct. How-
ever, with limited data it is often difficult to accurately
model sophisticated distributions (e.g. with long range
dependencies). If our performance depends only on
accurate estimation of marginal distributions and not
on correctly modelling the entire joint distribution, we
may be better off learning these quantities directly
than learning a more complex model. This is anal-
ogous to the distinction between generative and dis-
criminative learning methods for classification: gener-
ative methods learn a joint model of inputs and class
labels and appeal to its conditional at test time, while
discriminative models do not attempt to capture the
joint but rather model the conditional directly.

3 MaxEnt & Random Field Models

Below we discuss how our new objective function
C1 can affect the behaviour and performance of the
MEMM, CRF and HRF (our extension).

3.1 MEMMs and Label-Bias

A MEMM defines a conditional distribution over labels
S given features X:

p(SIX,6) = TTi= psilse1, ) (4)



where for simplicity we assume sg is a fixed initial
state. Here, and throughout the paper, x; can be a
feature of the entire observation stream X. The indi-
vidual conditional distributions are parameterized as
maximum entropy logistic models

p(stlsi—1, ) = g exp (X, Mefu(si_i, z))  (5)

The predefined potentials fj describe how s; depends
on both s; 1 and z¢, and the learned weights A, de-
termine the contribution of each dependence fr. Z is
a local normalization constant. Since z; is a feature
on X, it is unnecessary to write fj as a function of X.

MEMDMs suffer from the so called “label-bias” problem
(Bottou, 1991). As a didactic example, we revisit the
rib-rob’ problem discussed in Lafferty et al. (2001).
The training data consists of the observation sequence
rib_ labelled 0123 and the sequence rob_ labelled 0453,
both of which occur with equal probabilities. Let us
consider the case where z; is simply the observed letter
at time ¢. Note that the training data never contain an
observation of —o— corresponding to a transition from
1 to 2. Thus, Cy cannot accurately estimate this tran-
sition probability, P(2|1,—o0—), since this term does
not appear in the cost function (see equation 2). How-
ever, at test time (even if we only test on the training
data), the model needs to evaluate P(0123|rob) which
requires an estimate of P(2|1,—o—). In general, we
can think of equation 4 as a way of redistributing prob-
ability mass from s; to sy11. With the objective Cy,
the MEMM cannot learn how to do this redistribution
for situations not represented in the training corpus.

In contrast, using the new objective C, training will
implicitly integrate over the uncertain previous labels
at each time step. In the example above, the MEMM
will be forced to estimate P(2|1,—o0—) even though
this “impossible” transition was not present in the
training corpus. To see this, note that the marginal
distribution, which is used in training, for a given la-
bel [; at time ¢ is:

pel=) =Y pllilse 1, z)p(se1|2i™")  (6)

St—1

which shows that under (', training is dependent on
all possible previous states s;—1, not only on those seen
in the training set.

When an MEMM is trained on this toy example un-
der Cy, the “per-symbol” labelling error is 33% (not
including label 0). Under C4, this error rate is roughly
17%, since the model still makes errors in labelling the
states corresponding to the observation —r—, but no
longer makes errors on —o— and —i—.

In section 5, we provide experimental results demon-
strating that this improvement is not trivial: our new
objective function significantly outperforms the stan-
dard one for training the MEMM architecture on a
synthetic robot navigation problem and on a real doc-
ument labelling task.

3.2 Sequential Random Fields

Although training with Cj can alleviate the “label-
bias” problem in the MEMM architecture, it can be
argued that the problem is with the model itself and
not with the standard objective function Cy. Indeed,
the CRF (Lafferty et al., 2001) provides a more prin-
cipled solution by changing the basic model. In effect,
a CRF infers the label at time ¢ (given the observa-
tions) based on its inferred belief about other labels
both before and after time t. In contrast, the MEMM
infers the label at time ¢ based only on how it infers
the labels before time ¢. In fact, for the previous ’rib-
rob’ example,the CRF error rate is 0. We now consider
the difference between the two cost functions when us-
ing the CRF and the HRF, an extension incorporating
hidden states (see figure 1).

3.2.1 CONDITIONAL RANDOM FIELDS

The CRF defines a conditional distribution over labels:

p(SIX,0) = L TTi—; exp (X Mefulst_y, ) (7)

Again for simplicity we assume a fixed initial state sq.
The potentials f; are again hand-crafted while Ag’s
are parameters to be learned from data. Crucially, the
CRF has a joint (global) normalization factor Z which
allows it to circumvent the ’label-bias’ problem (see
(Lafferty et al., 2001)).

The difference between the objectives Cy and C is
considerably more subtle in the CRF case than in the
MEMM case since the CRF does not suffer from the
label-bias problem. How, then, will C; set the feature
weights differently than Cy?

Consider a simple situation in which a particular tran-
sition is never observed. If there is feature that is
nonzero only for this transition, then under Cj the
model must give this feature an infinitely large nega-
tive weight. However, since the real world often vio-
lates our modelling assumptions, such a feature may
still be useful in improving the marginal distributions,
even at the expense of a worse joint distribution.

We demonstrate this difference with another didactic
example, which has four labels 1,2,3,4 and two ob-
servations a,b. The generative process is as follows:
while the observations are —a— the labels always al-



ternate between 1 and 2, and while the observations
are —b—, the labels always alternate between 3 and 4.
The process switches between these two modes with
equal probability, and spends, on average, the same
amount of time in each mode. Thus, the minimal pos-
sible labelling error rate is 50%.

An example sequence looks like this:

label 1 1212343432121212434343432124343412121
observation: aaaabbbbbaaaaaaabbbbbbbbaaabbbbbaaaaa

Let us consider an impoverished model with only
one feature. The binary feature f(si_,,z;) is equal
to 1 only for the arguments: ({1,1},a), ({2,2},aq),
({3,3},b), or ({4,4},b). Note that these self transi-
tions will never occur in a training set. Hence, under
Co, the feature must be given a large negative weight.
We find that the resulting error rate is close to 100%
(since this large weight forces the incorrect labellings
of 3 or 4 with an —a— and vice versa). In contrast,
under C1, this feature is given a large positive weight,
since it accurately captures the marginal distributions,
and we find that the resulting error rate is roughly 50%
(which is optimal).

This example was constructed to demonstrate a po-
tential tradeoff in modelling the joint vs. the marginal
distributions. In section 5, we give experimental re-
sults for a toy HMM and a document labelling task.

3.2.2 HIDDEN RANDOM FIELDS

As conditional models, both the CRF and MEMM are
designed to be able to use long range, nonlocal features
as observations. However, these models still assume a
Markovian structure among the labels. Extending the
CRF, we consider the Hidden Random Field (HRF)
model shown in figure 1. A HRF islike a CRF but with
a hidden Markov model on the hidden states.! This
allows past information in the label history to be held
in the hidden states and used, along with the features,
to predict future labels. (Note however, that these
hidden models no longer share the convexity proper-
ties of maximum entropy models Della Pietra et al.
(1997); thus they are susceptible to local optima prob-
lems during training.)

The conditional distribution of the labels for HRFs is

T
PTIX) = 2 S expf 3037 Aefilhiy )
hT t=1 k (8)
+ Zajgj(st:ht;mt)}

J

'We could also consider a slightly more powerful model
by adding links {s;, si+1} to the graphical model, which
permits Markov dependence directly between the labels.

Asin CRFs, there is a joint normalization factor. Note
that the distribution integrates out the hidden states.

An important distinction with the CRF is that the hid-
den states are not given during training. Hence, the
hidden states must be integrated over to compute ei-
ther cost function. This model is significantly more un-
constrained since both cost functions do not explicitly
depend on the joint distribution of the hidden states.
We give an example in Section 5 that demonstrates
how C; can obtain more accurate marginal distribu-
tions than Cj using this additional freedom.

4 Parameter Estimation

In this section we derive an algorithm to efficiently op-
timize C; for a CRF. Algorithms for the MEMM and
HRF can be derived similarly. Most of the work is in-
volved in computing sufficient statistics corresponding
to each parameter. This can then be used by various
optimizers like conjugate gradient or iterative scaling
type algorithms to perform the actual update?. In the
case of an MEMM sometimes a full M-step is even
feasible.

Let l? be the given sequence of labels. Using the def-
inition of a CRF (equation 7) and differentiating C}
with respect to \g, we obtain

aC: _1 ;
ow —T Zt,i<fk(szfl7xi))p(s::_l\Sg:it,X,G)

- Zz’<fk(3§71; xi))p(sj_l\X,G)

(9)

where (f), is the expectation of f under distribution p.
The second term of (9) can be calculated using belief
propagation to compute the joint probabilities

wili_y) = p(sioy = 1{_11X,0) (10)

Here, each [; denotes a value that variable s; can take.
Then the expectations of fj are taken explicitly. The
first term of (9) can be similarly calculated if we have
the following quantities:

will ) = p(sioy =Ui|se =1, X,0) (11)

Using another two passes over the network, we com-
pute the following “forward” and “backward” sums

wl(li_y) =i p(siy =1 |se =1, X,0)  (12)
wh(liy) =Y p(si =1 \|se=1,,X,0) (13)
Then w;(l! ) =w!(Ii_|)+wi(si ;). The w! are com-

2Some results (Minka, 2001) suggest that conjugate gra-
dient is more efficient than iterative scaling.
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Figure 2. Left: The blind robot problem; the shaded locations indicate where the proximity sensor detects a wall. Right:
Predicted distributions over the location of the robot by the 3 models. At the top are the observations (the direction of
last movement, and whether it is next to a wall). In each square the area of the blobs correspond to the probability of
being in that location, and the circle denotes the true location.

puted using the “forward” recursion:

. =1
L () = 4 s o 14
Vz+1( z) {6li,ii + Zl,'_1 wzf(lzfl) t>1 ( )
Wl (1Y) = Wit (sig1 = Lipa|si = L)l (1) (15)

where d,5 = 1 if @ = b and 0 otherwise, and u{ are
intermediate values used in the recursion. Similarly,
the “backward” recursion is:

0, ; i=T

vi(l) = b , . (16)
6li7ii + Zli+1 wzl?+1 (lzﬁ_l) i<T

wi(li 1) = wi(sic1 = lica|si = L)y} (Is) (17)

These recursions are as efficient as the belief propaga-
tion updates used to compute w; (up to a constant).

5 Results

We have tested our new cost function on several syn-
thetic examples and on a real document labelling
task, demonstrating its superior performance in vari-
ous cases and the practicality of the associated training
algorithms for MEMMs, CRFs and HRFs.

One could also consider training vanilla HMMs with
different cost functions. However, as discussed in (Laf-
ferty et al., 2001), a discriminatively trained HMM,
under Cy, is equivalent to a CRF trained with Cy us-
ing table based features. Similarly, a HMM discrimina-
tively trained with C} is equivalent to a CRF trained
with C; using table based features. For both these
cases we present results below. It is also possible to
consider training the HMM with the naive extension
> 1 logp(ss, X) of the standard HMM cost function
log p(S,X). However, this naive extension performs

particularly poorly due a drastic tendency to focus on
modelling the entire observation sequence X rather
than each s;; thus these results are not appropriate
for comparison.

5.1 Blind Robot Example

The blind robot example of this section highlights the
difference between optimizing the ordinary cost func-
tion Cy and the proposed cost C; for the MEMM.

We have a robot moving in a grid world. Initially
the robot’s location is uniformly distributed across the
room. At each step the robot moves in any of 8 com-
pass directions, and a proximity sensor tells it whether
it is touching a wall or not (see figure 2). We assume
that there is no noise in the system. Given an un-
known starting location, the sequence of movements of
the robot, and wall sensor readings, we wish to predict
the location of the robot. We compared three models:
an MEMM trained with the old cost function (MO0),
the MEMM but trained with the new cost function
(M1), and a CRF trained with the old cost function
(C0). The performance using a CRF trained with C
is essentially identical to the performance with Cy and
is not shown. The MEMMs were trained with full M
steps, and the CRF was trained using conjugate gra-
dient. Full table-based parameterizations were used in
all three models.

The right panel of figure 2 shows a typical observation
sequence for a 5x5 world, and the corresponding dis-
tribution over locations (labels) predicted by all three
models. As expected, C0 was able to locate the robot
quickly, as was M1, while M0 performed the worst.
Notice that at time 4, C0 was able to determine that
only one out of the six possible locations at time 3 was
possible; M1 was also able to predict the true location



move north, no wall move north, finds wall

Figure 3. The features learned by the three models. The lo-
cation of each small square within the 5x5 grid corresponds
to the previous location of the robot, and each blob in the
squares corresponds to the next location. For the MEMMs,
the size of each blob describes the probability of transiting
to the next location, while for the CRF it is related to the
chance of seeing both locations together.

quite accurately. However, M0 was not able to do well
because most of the probability mass over the previ-
ous location is concentrated on those locations which
are inconsistent with the observations at time 4. In
figure 3, we show the parameters learned by the mod-
els for observations {north,wall} (right column) and
{north,no-wall} (left). (See figure caption.) The
parameters for other observations follow similar pat-
terns. As expected, both M0 and CO learned sensible
features when the current observations are consistent
with the previous location, but do not learn anything
when they are inconsistent. However, due to the ’label-
bias’ problem, M0 does not learn appropriate features
for the inconsistent {north,wall} case (see figure 3).
On the other hand, M1 learns features which let it
predict a likely location of the robot even when the
previous location is inconsistent. This location is nor-
mally the one consistent with the current observations
and closest to where the robot would have been if the
previous location were correct.

5.2 The FAQ Dataset

We tested the viability of the new cost function on the
Frequently Asked Questions (FAQ) dataset introduced
by McCallum et al. (2000). The data consists of 38
files belonging to 7 Usenet newsgroup FAQs. Each
file consists of a header, followed by question/answer
pairs, and ends with a tail section. The task is to label
the 300-2500 lines in each file according to whether it
is in the header (H), a question (Q), an answer (A) or
in the tail (T) using a set of 24 features such as begins-
with-number, begins-with-question-word, and indented-
1-to-4 (see (McCallum et al., 2000) for the full list).

We trained a HMM by optimizing the full joint dis-
tribution over labels and observations (which are the
features), and MEMMs and CRFs using both the Cy
and C; objective. A zero-mean Gaussian prior with a
variance of 10 is imposed on the weights of each model
for weight decay. For each FAQ, we performed leave-
1-out evaluation by training the models on all but one
file which we reserved for testing.

Table 1 (top) shows the prediction errors given only
the observation sequence of each test case. The pre-
diction error is calculated as the percentage of lines la-
belled wrongly over the 38 tests. The HMM performed
the worst here as expected. Training the MEMM with
the C; objective lowered the error by 84.8% over us-
ing Cy. This significant improvement is due to M1
capturing the marginal distributions over labels more
accurately using C; — though it is not clear if the
label-bias’ problem has a role here. For the CRF,
training with C; gives a substantial although less dra-
matic improvement of 16.2% over Cy. It is possible
that the CRF performed worse than the MEMM due
to overfitting — observe the low training errors of the
CRFs.

Figure 4 shows a histogram of the probabilities the
model assigned to the correct labels in the test set
while figure 6 shows the predicted distribution over
the labels for each line in the FAQs. We see a drastic
improvement for M1.

Table 1 (bottom) show the errors in predicting each
label s; for the unusual case that we are given the ob-
servations X and the correct sequence of labels s™!
up to time t. The models trained under Cy performed
better than those trained with C. This supports the
argument in section 2 that the Cy objective minimizes
the error of predicting the correct label given the ob-
servations and the correct labels up to that point (see
(2)), and shows that under Cj some aspects of the joint
distribution are more accurately captured.
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Figure 4. Histogram plots of the probability mass that var-
ious models assigned to the correct label in the test set.
Note that M1 assigns probabilities close to 0 significantly
less frequently than MEMM-Cj or CRF-C,/Cy.

Test error (%) | Training error (%)

HMM 14.71 8.20
MEMM-Cy 3.57 0.78
MEMM-C} 0.54 0.22
CRF-Cy 3.53 0.02
CRF-C; 2.96 0.02
HMM 4.23 2.52
MEMM-Cy 0.08 0.05
MEMM-C} 0.16 0.08
CRF-Cy 0.25 0.01
CRF-C 0.25 0.01

Table 1. Errors on the FAQ dataset for various models and
test conditions. Top: Observations are given at test time.
Bottom: Unusual test condition where both the observa-
tions and the correct labels up to that point are given.

5.3 Conditional Random Fields

As an illustrative example, consider training a CRF
on data generated from a simple 4 state HMM with 4
labels. All states i can transition only to ¢ or i+ 1 with
the probability p and 1 — p, and we assume circular
boundary conditions (4 — 1). Also, each state 7 emits
the observation ¢ with probability q or else emits 7+ 1
or ¢ — 1 with equal probability. If a full table based
parameterization is used, then both models perform
equally well.

However, we consider an interesting variant where
we “corrupt” each feature. In addition to the fea-
ture f;j(st_;) being one if si_; = {i,j}, the feature
now takes on a positive value for another transition.
We set this transition and value randomly, and the
state-observation features are similarly corrupted. We
tested how well the CRF model performs for a variety
of these corrupted features and data sequences (using
different p’s and ¢’s). Figure 5 shows that the objec-

0.3r

0.2r o

C1 Percent Error

0.2
CO Percent Error

Figure 5. Cop vs. C: error rates for CRF models that have
‘corrupted’ table based features (see text). The region be-
low the diagonal line is where C; outperforms Co

tive C] often outperforms Cy. Informally, these results
vary depending on the parameters and the amount of
data, though we rarely find C} performing worse than
Co. The results from the FAQ dataset also show a
significant improvement with Cj.

5.4 Hidden Random Fields

As a final demonstration of the different objectives, we
trained a simple Hidden Random Field model on a syn-
thetic example requiring the labeler to remember state
information about the past. The task has two labels,
0 and 1, and four observations, A, B, R,I. When the
observation is A the label is 1, and when B the label is
0. Obviously neither model has problems learning this
aspect. In addition, there is a “resume” observation
R, which repeats the most recent label from the A/B
observation. One bit of memory is required to label
R correctly. Finally, when the observation is the “in-
terrupt” I, the the labels “cycle”, inverting the value
of the label when the observation was last equal to I.
Again, one bit of memory is needed to model the joint
label distribution during the interrupt I. However,
due to randomness, it is never possible to distinguish
between 0101 or 1010 during the interrupt sequence
(thus the error rate will be 50% during the Is). The
standard CRF clearly cannot correctly label the R’s
with no memory.

To obtain the minimal error rate, all that is required
is to use only one bit of information to use with the
“Resume” mode. However, two bits of information are
required to capture the joint distribution. An HRF
with only a single bit (two hidden states) is forced to
chose between modelling the “Resume” or “Interrupt”
mode. We trained an HRF with Cy (model H0) and
Ci (model H1). Under Cy, the model appropriately
uses its memory, while under Cj it often chooses to
model “Interrupt” mode (during which the error rate is
50%). Below we show the hidden states, observations,
and label performance (errors are X) of both models
over two runs.
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Figure 6. FAQ line labelling results. Each block of four horizontal strips shows the log probability assigned to each of the
four labels (Answer,Question,Head,Tail) by various models. Horizontal position moves through the data; the tick marks
at top and bottom denote the file boundaries. The intensity of each strip corresponds to log probability assigned to a
label given the features of the line in the FAQ file. Blocks from top to bottom: true labels, M0, M1, C0, C1.

HO hid state:22211221112211222211222112121111211111222211121112

HO errors : XXXXXXXXXXXXXXXXXXXXXXXXXXX XXX X X XXXX XX X
Observations:BBRIRIRIRRIRIRIRRRIRIRRIRIIITAABITRBRBIBRRIRAIIRAI
H1 errors : X X X X XX X X X

H1 hid state:22222222222222222222222222222112222222222222111111
HO hid state:21222111122221112221112222211111212221121211122112

HO errors : X XX X X XX
Observations:AITRRIRRRIRRRIBRIRRIAATRRRRIBARBIIIBBIRIIIIRBIRIRI
H1 errors HEED § X X X X X XX X

H1 hid state:11111111111111222222111111112112222222222222222222

More experimental results are needed to understand
how fruitful this extension is.

6 Discussion & Conclusions

With limited data, it is important to match model
training with test conditions. In the spirit of discrimi-
native training, we have introduced an objective func-
tion that more closely resembles a test condition of
common interest. The very simple idea is that in many
cases test performance only depends on the quality of
our model’s marginal conditional distribution, rather
than a good joint conditional distribution.

We have demonstrated significant improvements in
both synthetic and real-world problems of C; over Cy
for a class of Markovian models. The most drastic im-
provement is for the MEMM. We find that the our new
cost function provides a novel and interesting way to
deal with the tricky label-bias problem. Even though
the CRF solves this problem in a more principled man-
ner, it is not clear that the CRF is always preferable
to the MEMM. (For example, our FAQ experiment
shows the MEMM under C} significantly outperform-
ing other models.) In some cases the MEMM architec-
ture captures important aspects of the underlying pro-
cess, and we have provided a way of retaining the ben-

efits of this architecture while still solving the label-
bias problem. Finally, our new objective function C}
can be used to train MEMM and CRF models just as
efficiently as the standard joint likelihood.
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