
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 34, No. 3, August 2009, pp. 726–736
issn 0364-765X �eissn 1526-5471 �09 �3403 �0726

informs ®

doi 10.1287/moor.1090.0396
©2009 INFORMS

Online Markov Decision Processes

Eyal Even-Dar
Google Research, New York, New York 10011, evendar@google.com

Sham. M. Kakade
Toyota Technological Institute, Chicago, Illinois 60637, sham@tti-c.org

Yishay Mansour
School of Computer Science, Tel-Aviv University, 69978 Tel-Aviv, Israel, mansour@post.tau.ac.il

We consider a Markov decision process (MDP) setting in which the reward function is allowed to change after each time step
(possibly in an adversarial manner), yet the dynamics remain fixed. Similar to the experts setting, we address the question
of how well an agent can do when compared to the reward achieved under the best stationary policy over time. We provide
efficient algorithms, which have regret bounds with no dependence on the size of state space. Instead, these bounds depend
only on a certain horizon time of the process and logarithmically on the number of actions.

Key words : Markov decision process; no-regret algorithms
MSC2000 subject classification : Primary: 90C40, 68T05; secondary: 68Q32
OR/MS subject classification : Primary: dynamic programming/optimal control, Markov, finite state
History : Received August 16, 2006; revised September 29, 2008. Published online in Articles in Advance July 22, 2009.

1. Introduction. Finite state and actions Markov decision processes (MDPs) are a popular and attractive way
to formulate many stochastic optimization problems ranging from robotics to finance (Puterman [17], Bertsekas
and Tsitsiklis [2], Sutton and Barto [18]). Unfortunately, in many applications the Markovian assumption made
is only a relaxation of the real model. A popular framework that is not Markovian is the experts problem,
in which during every round a learner chooses one of n decision-making experts and incurs the loss of the
chosen expert. The setting is typically an adversarial one, where Nature provides the examples to a learner. The
standard objective here is a myopic, backwards-looking one—in retrospect, we desire that our performance is
not much worse than had we chosen any single expert on the sequence of examples provided by Nature. Expert
algorithms have played an important role in computer science in the past decade, solving problems varying from
classification to online portfolios (see Littlestone and Warmuth [13], Blum and Kalai [3], Helmbold et al. [8]).
There is an inherent tension between the objectives in an expert setting and those in a reinforcement learn-

ing (RL) setting. In contrast to the myopic nature of the expert algorithms, an RL setting typically makes the
much stronger assumption of a fixed environment, and the forward-looking objective is to maximize some mea-
sure of the future reward with respect to this fixed environment. Therefore, in RL the past actions have a major
influence on the current reward, whereas in the regret setting they have no influence. In this paper, we relax the
Markovian assumption of the MDPs by letting the reward function be time dependent, and even chosen by an
adversary as is done in the expert setting, but still keeping the underlying structure of an MDP.
The motivation of this work is to understand how to efficiently incorporate the benefits of existing experts’

algorithms into a more adversarial reinforcement learning setting, where certain aspects of the environment
could change over time. A naive way to implement an experts’ algorithm is to simply associate an expert with
each fixed policy. The running time of such algorithms is polynomial in the number of experts, and the regret
(the difference from the optimal reward) is logarithmic in the number of experts. For our setting, the number
of policies is huge, namely, for an MDP with state space S and action space A we have �A��S� policies, which
renders the naive experts’ approach computationally infeasible. Another inherent problem in applying the best
expert algorithms is that the current reward of the policy depends on the past actions, which is never the case
in the standard expert setting. Furthermore, straightforward applications of standard regret algorithms produce
regret bounds that are logarithmic in the number of policies, so they have linear dependence on the number
of states. We might hope for a more effective regret bound that has no dependence on the size of state space
(which is typically large).

1.1. Our model: Motivation. The setting we consider is one in which the dynamics of the environment
are known to the learner and are Markovian, but the reward function can change (adversarially) over time.
We assume that after each time step the learner has full information, i.e., complete knowledge of the previous
reward functions (over the entire environment), but does not know the future reward functions.

726

mailto:evendar@google.com
mailto:sham@tti-c.org
mailto:mansour@post.tau.ac.il

Even-Dar, Kakade, and Mansour: Online MDPs
Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS 727

Many of the classical online problems can be cast in this setting. The basic idea is to have the online algorithm
state as part of the MDP state. The changes in the state can be performed by actions (and incur the appropriate
cost). Then, the MDP waits for a request, and the cost of the arriving request is modeled through the adversarial
cost function. In the following, we describe in somewhat more detail the connections using three typical online
problems: paging, k-server, and metrical task system (see Borodin and El-Yaniv [4] for an excellent exposition
of the subject).
In the paging problem there is a memory that can hold k pages out of the N possible pages. A page request

is a hit if it is in memory (and incurs a cost of zero) and a miss otherwise. The online algorithm can transfer
pages to the memory at a cost of one per page. To model the paging problem as an MDP, each state is labeled
by the set of pages, that it holds in memory (there are

(
N

k

)
states). The MDP has two actions: swap page, which

changes the state by replacing one page and incurs a cost of one, and wait for request, which waits for the next
page request (there are k�N − k� + 1 action in every state). The cost of a request for page p is zero for any
state that includes page p and is one for any other state. (Note that unlike the classical paging model, we do
not require bringing the page to memory in case of a miss, but the decision maker can later perform it. This
difference between the two models is bounded by at most a factor of two in the cost, for any input sequence.)
Another classical example is the k-server problem. For simplicity, consider the case that the k servers are on

a line graph with N nodes. The state includes the location of the k servers on the line (there are
(

N

k

)
states). The

actions are: move server i left, move server i right, and wait for a request (there are at most 2k + 1 actions in
each state). Either move actions have a cost of one. When the decision maker performs wait for a request, the
environment generates a request at node r . We model the effect of a request as a cost vector, where the cost in
state s = �i1� � � � � ik� is the minimal distance between one of the k servers in state s and the request in r , i.e.,
minij∈s��ij − r ��. Again, note that the dynamics are completely known to the decision maker, and the adversarial
requests are modeled through the cost vectors. (Again, note that unlike the classical k-server model, we do not
require changing states when the cost is not zero, but the decision maker can later make the state change. Again,
the difference between the two models is bounded by a factor of two in the cost, for any request sequence.)
Both of the above examples, the paging problem and the k-server problem, are examples of a metrical task

system. One can show that a general metrical task system can also be modeled in our setting. The states of the
MDP and the metrical task system are the same states. The actions are either move to state j whose cost in
state i is di� j , or wait for a request. When a request arrives, we can model it by a cost vector, where the cost
in state i is the minimum over j of di� j + cj , where cj is the local cost in state j . As before, the dynamics are
completely known, and state changes are not forced as a response to a request (and can have an effect of at
most a factor of two).
Another classical motivating example is stochastic inventory control (Puterman [17]). At the beginning of

each period the manager of a store has to decide how many items to order from the supplier based on the
amount of items she currently holds. The manager’s dilemma is that on one hand, holding the supply in store
has an inventory cost, and on the other hand, running out of items is a clear revenue loss. The manager’s goal
is to maximize its profit, i.e., total revenue minus inventory cost. Although the manager can model the demand
distribution, the item price and inventory cost can change between different periods due to the exogenous forces,
and thus we can formulate these problem as an online MDP.

1.2. Related work. McMahan et al. [14] also considered a similar setting—they also assume that the reward
function is chosen by an adversary and that the dynamics are fixed. However, they assume that the cost functions
come from a finite set (but are not observable), and the goal is to find a min-max solution for the related
stochastic game.
de Farias and Megiddo [6] considered a similar, yet different, problem. Similar to our setting, they have both

a “state,” which is affected by the past actions of the expert, and the assumption that after following an expert
for a while the past is “forgotten.” A few notable differences are that we can evaluate each expert even if we
do not follow him because we can estimate its state, whereas in their works this is impossible because the
current reward is influenced by the past in an unknown manner. Their main goal is to gain when Nature is
not adversarial, which is a nonissue in our setting. More importantly, if one implements their algorithm in our
setting it will be exponential in both time and space, whereas our algorithm is efficient and exploits the extra
knowledge that it is given.
Nilim and El Ghaoui [16] studied robust MDPs, which have known reward distributions, and their transition

matrices come from a convex set. They studied two possible models therein—one is that the transition matrix
is stationary, chosen once by Nature at the beginning, and second, where Nature chooses at each timestep a
matrix from the set. For this setting, they show how to compute the optimal policy using linear programming

Even-Dar, Kakade, and Mansour: Online MDPs
728 Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS

methods. This can be thought of as a game where the adversary chooses the transition matrix from a given set
each round.
Following our initial publication, Yu et al. [20] studied a similar model where the transition matrix is known

and stationary and the rewards are chosen by an adversary. Their algorithm is based on following the perturbed
leader and is computationally more efficient. In their analysis they use a similar notion of mixing time and
obtain similar dependence. An advantage of their algorithm is that the results hold with high probability.

2. The model. The online MDP, similar to the standard MDP, consists of state space S; actions available to
the agent at each state A; a transition matrix P which specifies, for every s, s′, and a, the probability of arriving
at state s′ from state s after performing action a; initial state distribution d1 over S; and a sequence of reward
functions r1� r2� � � � � rT , where rt is the (bounded) reward function at time step t mapping S × A into �0�1	.
The goal is to maximize the sum of undiscounted rewards over a T step horizon. We assume that the agent

has complete knowledge of the transition model P , but at time t, the agent only knows the past reward functions
r1� r2� � � � � rt−1. Hence, an algorithm � is a mapping from S and the previous reward functions r1� � � � � rt−1 to
a probability distribution over actions, so ��a � s� r1� � � � � rt−1� is the probability of taking action a at time t.
We define the return of an algorithm � as

Vr1� r2� � � � � rT
��� = 1

T
E
[T∑

t=1

rt�st� at�
∣∣∣d1��

]
�

where at ∼��a � st� r1� � � � � rt−1� and st is the random variable that represents the state at time t, starting from
initial state s1 ∼ d1 and following actions a1� a2� � � � � at−1. Note that we keep track of the expectation and not
of a specific trajectory (and our algorithm specifies a distribution over actions at every state and at every time
step t). This assumption is necessary because a specific trajectory makes the adversary too powerful, and also
note that when we compute the value of the optimal policy we must consider its expected value because we do
not have a specific trajectory in hand.
Ideally, we would like to find an algorithm � that achieves a large reward Vr1� � � � � rT

��� regardless of how
the adversary chooses the reward functions. In general, this of course is not possible, and, as in the standard
experts setting, we desire that our algorithm competes favorably against the best fixed stationary policy
�a � s�
in hindsight. Specifically, we would like to minimize the regret defined as

���� = max
r1� r2� � � � � rT

max

E
[T∑

t=1

rt�st�
�st��
∣∣∣d1

]
− Vr1� r2� � � � � rT

����

where
� S → A is any deterministic policy.

2.1. Mixing time. Before we provide our results, a few definitions are in order. For every stationary policy

�a � s�, we define P
 to be the transition matrix induced by
, where the component �P
	s� s′ is the transition
probability from state s to state s′ under
, i.e., �P
	s� s′ = ∑

a∈A
�a � s�Pa
s� s′ . Also, define d
� t to be the state

distribution at time t when following
, i.e.

d
� t = d1�P

�t�

where we are treating d1 as a row vector here.
We assume throughout this section that the MDP is a unichain model. Although it was shown recently that

finding whether an MDP is unichain is NP-hard (Tsitsiklis [19]), a unichain is one of the basic models of MDP
(see Puterman [17]); furthermore, the unichain model generalizes the ergodic model, which can be identified in
polynomial time.
Because we assume that the MDP is unichain, every policy
 has a well-defined unique stationary distribution,

which we call d
 . More formally, for every initial state s, d
� t converges to d
 as t tends to infinity and
d
P
 = d
 . Furthermore, this implies that there exists some � such that for all policies
, and distributions d
and d′,

�dP
 − d′P
�1 ≤ e−1/��d − d′�1�

where �x�1 = ∑ �xi� denotes the l1 norm of a vector x. We refer to � as the mixing time, and for convenience
assume that � ≥ 1.

Even-Dar, Kakade, and Mansour: Online MDPs
Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS 729

The parameter � provides a bound on the planning horizon timescale because it implies that every policy
achieves close to its average reward in O��� steps.1 This parameter also governs how long it effectively takes to
switch from one policy to another (after time O��� steps there is little information in the state distribution about
the previous policy). This definition is related to the definition of flexibility made by de Farias and Megiddo [6],
where in their terminology each expert is a policy in our setting and the environment is the MDP in our setting.
This assumption allows us to define the average reward of policy
 in an MDP with reward function r as

r�
� = Es∼d
 �a∼
�a � s��r�s� a�	�

and the value Q
�r �s� a� is defined as

Q
�r �s� a� ≡ E
[�∑

t=1

�r�st� at� −
r�
��
∣∣∣ s1 = s� a1 = a�

]
�

where st and at are the state and actions at time t, after starting from state s1 = s, then deviating with an
immediate action of a1 = a and following
 onwards. We slightly abuse notation by writing Q
�r �s�
 ′� ≡
Ea∼
 ′�a � s��Q
�r �s� a�	. These values satisfy the well-known recurrence equation

Q
�r �s� a� = r�s� a� −
r�
� +Es′∼Psa
�Q
�s′�
�	� (1)

where Q
�s′�
� is the next state value (without deviation).
If
∗ is an optimal policy (with respect to r), then, as usual, we define Q∗

r �s� a� to be the value of the optimal
policy, i.e., Q∗

r �s� a� = Q
∗� r �s� a�.
We now provide two useful lemmas. It is straightforward to see that the previous assumption implies a rate

of convergence to the stationary distribution that is O��� for all policies. The following lemma states this more
precisely.

Lemma 2.1. For all policies
,

�d
� t − d
�1 ≤ 2e−t/� �

Proof. Because
 is stationary, we have d
P
 = d
 , and so

�d
� t − d
�1 = �d
� t−1P

 − d
P
�1 ≤ e−1/��d
� t−1 − d
�1�

which implies �d
� t − d
�1 ≤ e−t/��d1 − d
�1. The claim follows because for any distributions d and d′, we
have �d − d′�1 ≤ 2. �

The following lemma derives a bound on the Q values as a function of the mixing time.

Lemma 2.2. For any reward function r in �0�1	 and policy
, we have Q
�r �s� a� ≤ 3� .

Proof. First, let us bound Q
�r �s�
�, where
 is used on the first step. For all t, including t = 1, let d
�s� t

be the state distribution at time t starting from state s and following
. Hence, we have

Q
�r �s�
� =
�∑

t=1

�Es′∼d
� s� t �a∼
�r�s′� a�	 −
r�
��

≤
�∑

t=1

�Es′∼d
 �a∼
�r�s′� a�	 −
r�
� + 2e−t/� �

=
�∑

t=1

2e−t/� ≤
∫ �

0
2e−t/� = 2��

Using the recurrence relation (1) for the Q values and the fact that rewards are bounded in �0�1	, we have that
Q
�r �s� a� ≤ 1+ Q
�r �s�
�. The result follows because 1+ 2� ≤ 3� . �

1 If this timescale is unreasonably large for some specific MDP, then one could artificially impose some horizon time and attempt to compete
with those policies that mix in this horizon time, as done by Kearns and Singh [11].

Even-Dar, Kakade, and Mansour: Online MDPs
730 Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS

3. Best expert algorithms. We first provide our assumption on the performance expert algorithms and
later, for completeness, provide the weighted majority algorithm (Littlestone and Warmuth [13], Cesa-Bianchi
et al. [5]).

Assumption 3.1 (Black Box Experts). An optimized best expert algorithm � is an algorithm that guar-
antees that for any sequence of reward functions r1� r2� � � � � rT over the action set A, the algorithm � selects a
distribution qt over A (using only the previous reward functions r1� r2� � � � � rt−1) such that for any a ∈ A,

T∑
t=1

Ea∼qt
�rt�a�	 ≥

T∑
t=1

rt�a� −√
TM log �A��

where rt�a� ∈ �0�M	. Furthermore, we also assume that decision distributions qt do not change quickly:

�qt − qt+1�1 ≤
√
log �A�

t
�

Next, we describe the weighted majority (WM) algorithm (Littlestone and Warmuth [13], Cesa-Bianchi
et al. [5]), which satisfies this assumption (see Algorithm 1). We remark that many other popular algorithms,
such as the exponential gradient (Kivinen and Warmuth [12]), also satisfy the assumption. The WM algorithm
variant that we present here requires knowing the horizon time T in advance; however, there exist other variants
such as doubling (Cesa-Bianchi et al. [5]) or changing the learning rate (Auer et al. [1]) that achieve the desired
regret bounds without knowing T in advance.

Algorithm 1. Weighted Majority Algorithm
Weighted Majority �T �
Choose an initial distribution P1;
for t = 1 to T do
Update Pt+1�a� = Pt�a��rt�a�/Zt , where Zt =∑

a∈A Pt�a��rt�a�;
end

Proposition 1. There exists a parameter � > 0 such that the weighted majority algorithm is an optimized
best expert algorithm.

A different flavor of a best expert algorithm that does not satisfy Assumption 3.1 but can be computationally
more efficient was introduced in Kalai and Vempala [10] and Hannan [7]. Consider a setting where the action
a ∈ A ⊂ Rd is a vector of dimension d, and the reward function r ∈�⊂ Rd is also a vector of dimension d. The
actual reward of performing action a under the reward function r is r�a� = ∑d

i=1 riai (such a reward function
is called linear). The follow the perturbed leader (FPL) algorithm works for problems that have the following
properties: (1) the reward function is linear, and (2) There exists an oracle M (efficient algorithm) that computes
the optimum of the static problem. We have the following associated parameters: (1) for any two decisions, we
have �a−a′�1 ≤ D (in the former setting each decision was associated with an expert), and (2) bounded reward,
i.e., r�a� ≤ R for any a ∈ A and r ∈�.

Algorithm 2. Follow the Perturbed Leader (FPL) Algorithm
FPL
for t = 1 to � do
Choose pt uniform at random in �0�d

√
t	d;

Use an oracle M to find the optimal action at+1 for reward function
∑t

i=1 rt + pt;
Use the action at+1 at time t + 1;
Observe rt+1.
end

The following proposition bounds the regret of FPL algorithm (see Algorithm 2).

Proposition 2. The FPL algorithm satisfies

E

[T∑
t=1

rt�at�

]
≥

t∑
i=1

rt�a� − 2
√

DRdT

for any action a ∈ A.

Even-Dar, Kakade, and Mansour: Online MDPs
Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS 731

The major advantage of the FPL type of algorithms is that they can handle an exponential number of experts
as long as the static problem can solved efficiently. A good motivating example is the shortest-path problem.
In the shortest-path problem an agent is given a graph with two special nodes s and t in each time step, the
agent chooses a path between s and t, and weight edges are revealed. The agent wants to minimize its average
path distance and the regret is measured with respect to the optimal static path, which can be computed easily
using Dijksta’s algorithm. Hence, the FPL algorithm works efficiently, although the number of paths might be
exponential and applying WM directly on the set of paths is computationally infeasible.

4. Online MDP: Idealized setting. Every algorithm in the online MDP model faces two major obstacles.
The first is computational because there is an exponential number of polices. The second is related to the MDP
state because the current state (or distribution over the states) depends on the history (which is the algorithm’s
past actions). Therefore, the current reward depends not only on the current action, but also on past actions.
This is in contrast to the common assumption in every best expert algorithm that the current reward is chosen
arbitrarily. In this section, we concentrate only on the first problem and define an idealized setting, which makes
the second problem regarding the MDP state irrelevant. In the next section, we will extend our solution to
address both problems.
In our idealized setting, in each time step the algorithm chooses a policy and observes its return, i.e., the

average reward
r�
�. Therefore, there is no “MDP state” anymore, and the current reward is independent from
the previous actions.
We start by describing and analyzing the naive approach. The naive algorithm uses an optimized best expert

algorithm (Assumption 3.1), where each deterministic policy is an expert and the loss function for a policy

at time t is
rt

�
�.
Because there is no state in the idealized setting, we can use the standard best experts algorithms directly,

with �A��S� experts where the reward
r�
� is bounded by one. Substituting these quantities in the best expert
performance guarantees we obtain the following proposition.

Proposition 3. Let � be an optimized best expert algorithm for the idealized settings. Then, for any
sequence of reward functions r1� r2� � � � � rT , for any stationary policy
,

E

[
1
T

T∑
t=1

rt
�
t�

]
≥ 1

T

T∑
t=1

rt
�
� −√�S� log �A�/T �

where
t is the policy selected by � at time t. Also, the algorithm � has space and time complexity O��A��S��.

The above approach is clearly computationally infeasible due to the large space and time complexities. How-
ever, the MDP has a structure that one can exploit to give efficient algorithms. Algorithm FPL_in_MDPs (see
Algorithm 3) is the FPL algorithm adapted to MDPs.2

Algorithm 3. FPL in Idealized Setting
FPL_in_MDPs
for t = 1 to � do
Choose pt uniform at random in ��0� �S��A�√t	�S��A�	;
Calculate the optimal policy,
t for the MDP with reward function r =∑t−1

i=1 ri + pt;
Use
t at time t;
end

Proposition 4. Algorithm FPL_in_MDPs in the idealized settings, for any sequence of reward functions
r1� r2� � � � � rT , for any stationary policy
,

E

[
1
T

T∑
t=1

rt
�
t�

]
≥ 1

T

T∑
t=1

rt
�
� −√�S��A�/T �

where
t is the policy selected by FPL_in_MDPs at time t. Also, FPL_in_MDPs has space complexity O��A��S��
and the time complexity is polynomial in �A� and �S�.

2 The analysis of this algorithm in MDPs was also done independently by McMahan et al. [15].

Even-Dar, Kakade, and Mansour: Online MDPs
732 Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS

Proof. The FPL_in_MDPs algorithm requires the reward function to be linear and its complexity is the
complexity of solving the optimal static problem. We first show that the reward function is linear, i.e.,
r̄�1� T 	

�
� =∑T
t=1
rt

�
�, where r̄�1� T 	 =
∑T

t=1 rt . Namely,

T∑
t=1

rt
�
� =

t∑
t=T

∑
s∈S

d
�s�
�a � s�rt�s� a�

= ∑
s∈S

T∑
t=1

d
�s�
�a � s�rt�s� a�

= ∑
s∈S

d
�s�
�a � s�
T∑

t=1

r�s� a�

=
r̄�1�T 	
�
��

Next, we would like to calculate the algorithm parameters. We know that the reward function is bounded by
R = 1; we also have that for any two policies
,
 ′, �d
 − d
 ′ � ≤ 2, and that the dimension is d = �S��A�.
Substituting in Proposition 2 gives the desired bound. The space complexity is �S��A� because we only need to
store the cumulative reward for every state action pair. The time complexity of computing the static problem is
that of computing an optimal MDP policy, and it can be done in time polynomial in �S� and �A�. �

Next, we present our algorithm MDP-E, which is as efficient as the FPL_in_MDPs, algorithm and its regret
bound is slightly better. In contrary to FPL_in_MDPs, the MDP-E algorithm is not general and directly exploits the
MDP structure. Later, we show that this algorithm translates to a good algorithm in the general setting as well.
The MDP-E algorithm is intuitive and simple to describe. The algorithm uses optimized best expert algorithms
(Assumption 3.1), but instead of using them on individual policies (as in Proposition 3), it associates each state
with an optimized best expert algorithm where the individual experts correspond to the actions in the state. The
policy of MDP-E is defined by the product of all best expert algorithms distributions. The immediate question is
what loss function should we feed to each expert in each state. It turns out that Q
t� rt

is an appropriate feedback.
Note that although the best expert algorithms are “local,” they receive “global” information through the loss
of Q
t� rt

.

Algorithm 4. MDP Expert Algorithm
MDP-E
Put in every state a best expert algorithm Bs;
for t = 1 to � do
Let at�s� be the distribution over action of Bs at time t;
Let
t be
t�s� = at�s�;
Use policy
t and obtain rt from the environment;
Feed Bs with gain function Q
t� rt

�s� ·�
end

Theorem 4.1. For any sequence of rewards r1� r2� � � � � rT , the MDP-E algorithm has the following perfor-
mance guarantee: For any policy
,

E

[T∑
t=1

rt
�
t�

]
≥

T∑
t=1

rt
�
� −√

3�T log �A��

where
1�
2� � � � �
T is the sequence of policies selected by MDP-E in response to r1� r2� � � � � rT .

Before proving the above theorem, we provide a technical lemma (which is a variant of a result in Kakade [9]).
The lemma motivates why our choice to feed each experts algorithm Bs the reward Q
t� rt

is appropriate.

Lemma 4.1. For any policies
 and
 ′,

r�

′� −
r�
� = Es∼d
′ �Q
�r �s�
 ′� − Q
�r �s�
�	�

Proof. Note that by definition of stationarity, if the state distribution is at d
 ′ , then the next state distribution
is also d
 ′ if
 ′ is followed. More formally, if s ∼ d
 ′ , a ∼
 ′�a � s�, and s′ ∼ Psa, then s′ ∼ d
 ′ . Using this and
Equation (1), we have

Es∼d
′ �Q
�r �s�
 ′�	 = Es∼d
′ � a∼
 ′ �Q
�r �s� a�	

= Es∼d
′ � a∼
 ′ �r�s� a� −
r�
� +Es′∼Psa
�Q
�r �s

′�
�		

Even-Dar, Kakade, and Mansour: Online MDPs
Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS 733

= Es∼d
′ � a∼
 ′ �r�s� a� −
r�
�	 +Es∼d
′ �Q
�r �s�
�	

=
r�

′� −
r�
� +Es∼d
′ �Q
�r �s�
�	�

Rearranging terms proves the lemma. �

Now we complete the proof of the theorem.
Proof of Theorem 4.1. Using the assumed regret in Assumption 3.1,

E

[T∑
t=1

rt
�
� −

T∑
t=1

rt
�
t�

]
=

T∑
t=1

Es∼d

�Q
t� rt

�s�
� − Q
t� rt
�s�
t�	

= Es∼d

[T∑
t=1

Q
t� rt
�s�
� − Q
t� rt

�s�
t�

]

≤ Es∼d

�
√
3�T log �A�	 =√

3�T log �A��
where the first equality is by Lemma 4.1, in the second equality we used the fact that d
 does not depend on
the time, and the last inequality uses the regret bound of Assumption 2 with M ≤ 3� (by Lemma 2.2). �

5. Online MDP: The general setting. In this section, we derive our main result showing how to use any
generic experts algorithm in the general setting, where the current reward is influenced by the previous policies.
Whereas in the previous section we use only the regret part of Assumption 3.1, for the general setting we

will also use the “slow change” condition. Intuitively, our experts algorithms will be using a similar policy for
significantly long periods of time.
Note that although we moved from the idealized settings to the general settings and our target function had

changed, our algorithm MDP-E remained (surprisingly) unchanged. We now state our main theorem.

Theorem 5.1. For any sequence of reward functions r1� r2� � � � � rT , for any stationary policy
,

Vr1� r2� � � � � rT
�MDP-E� ≥ Vr1� r2� � � � � rT

�
� − 4�2

√
log �A�

T
−
√
3� log �A�

T
− 4�

T
�

Note that the regret vanishes at the rate O�1/
√

T �, as is also the case with stateless experts algorithms.
Furthermore, the bound does not depend on the size of the state space, but only on the mixing time. Note that
although our bounds depend on the mixing time, which is the maximum over all policies’ mixing time, the
bounds are actually better because they depend only on the mixing time of the policies that were actually used.

5.1. The analysis. The analysis has two parts. First, we use the performance bounds of the algorithm in the
idealized setting. Then, we take into account the slow change of the policies to show that the actual performance
is similar to the instantaneous performance.

Taking mixing into account. First, we relate the values V to the sums of average reward used in the
idealized setting. We call an algorithm � slowly changing if for any reward sequence r1� r2� � � � � rT , for any
state we have �
t�· � s� −
t+1�· � s��1 ≤√

log �A�/t, where
t is the policy � selects at time t.

Theorem 5.2. For any reward sequence r1� r2� � � � � rT , for any slowly changing algorithm �,

∣∣∣∣Vr1�r2� � � � �rT
��� − 1

T

T∑
t=1

rt
�
t�

∣∣∣∣≤ 4�2

√
log �A�

T
+ 2�

T
�

where
1�
2� � � � �
T is the sequence of policies selected by � in response to r1� r2� � � � � rT .

Because the above holds for all slowly changing � (including those � that are a constant policy
), then
combining this with Theorem 4.1 (once with � as MDP-E and once with � as
) completes the proof of
Theorem 5.1. We continue and prove the above theorem.
The following simple lemma bounds the distance in the next state distribution as a function of the distance

between the policies used.

Lemma 5.1. Let
 and
 ′ be such that �
�· � s� −
 ′�· � s��1 ≤ �. Then, for any state distribution d, we
have �dP
 − dP
 ′ �1 ≤ �.

Even-Dar, Kakade, and Mansour: Online MDPs
734 Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS

Proof. Consider the case when d is a delta function on s. The difference in the next state distributions,
�dP
 − dP
 ′ �1, is ∑

s′
��P
	s� s′ − �P
 ′

	s� s′ � = ∑
s′

∑
a

�Ps�a�s
′��
�a � s� −
 ′�a � s���

≤ ∑
s′� a

Ps�a�s
′��
�a � s� −
 ′�a � s��

= ∑
a

�
�a � s� −
 ′�a � s�� ≤ ��

Linearity of expectation leads to the result for an arbitrary distribution d. �

Analogous to the definition of d
� t , we define

d�� t = Pr�st = s � d1��	�

which is the probability that the state at time t is s given that � has been followed.

Lemma 5.2. Let
1�
2� � � � �
T be the sequence of policies selected by an optimized best expert algorithm
� in response to r1� r2� � � � � rT . Then,

�d�� t − d
t
�1 ≤ 2�2

√
log �A�

t
+ 2e−t/� �

Proof. Let k ≤ t. Because � is an optimized best expert algorithm (Assumption 3.1), we have that

�
k�· � s� −
t�· � s��1 ≤
t−1∑
i=k

√
log �A�

i
≤ �

√
t − √

k�
√
log �A� ≤ 2�t − k�

√
log �A�

t
�

Using this with d�� k = d�� k−1P�
k� and d
t
P
t = d
t

, we have

�d�� k − d
t
�1 = �d�� k−1P

k − d�� k−1P

t + d�� k−1P

t − d
t
�1

≤ �d�� k−1P

t − d
t

�1 + �d�� k−1P

k − d�� k−1P

t �1

≤ �d�� k−1P

t − d
t

P
t �1 + 2�t − k�
√
log �A�/t

≤ e−1/��d�� k−1 − d
t
�1 + 2�t − k�

√
log �A�/t�

where we used in the second inequality Lemma 5.1, and in the third inequality our mixing time assumption.
Recursing on the above equation leads to

�d�� t − d
t
� ≤ 2

√
log �A�/t

t∑
k=2

�t − k�e−�t−k�/� + e−t/��d1 − d
t
�

≤ 2
√
log �A�/t

�∑
k=1

ke−k/� + 2e−t/�

≤ 2
√
log �A�/t

∫ �

0
ke−k/�dk + 2e−t/�

= 2�2
√
log �A�/t + 2e−t/� �

which completes the proof of the lemma. �

We are now ready to prove the mixing theorem.
Proof of Theorem 5.2. By definition of V ,

Vr1� r2� � � � � rT
��� = 1

T

T∑
t=1

Es∼d�� t � a∼
t
�rt�s� a�	

≤ 1
T

T∑
t=1

Es∼d
t
� a∼
t

�rt�s� a�	 + 1
T

T∑
t=1

�d�� t − d
t
�1

≤ 1
T

T∑
t=1

rt
�
t� + 1

T

T∑
t=1

(
2�2

√
log �A�

t
+ 2e−t/�

)

≤ 1
T

T∑
t=1

rt
�
t� + 4�2

√
log �A�

T
+ 2�

T
�

Even-Dar, Kakade, and Mansour: Online MDPs
Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS 735

where we have bounded the sums by integration in the second to last step. A similar argument for the lower
bound leads to the result. �

Proof of Theorem 5.1. We first relate Vr1� r2� � � � � rT
�
� to

∑T
t=1
rt

�
�:

Vr1� r2� � � � � rT
�
� = 1

T

T∑
t=1

Es∼d
� t � a∼
�rt�s� a�	

≤ 1
T

T∑
t=1

Es∼d
 �a∼
�rt�s� a�	 + 1
T

T∑
t=1

�d
� t − d
�1

≤ 1
T

T∑
t=1

rt
�
� + 1

T

T∑
t=1

2e−t/�

≤ 1
T

T∑
t=1

rt
�
� + 2�

T
�

Using this inequality and Theorem 5.2 we are ready to complete our proof:

Vr1� r2� � � � � rT
�
� − Vr1� r2� � � � � rT

��� ≤ 1
T

T∑
t=1

rt
�
� + 2�

T
− Vr1� r2� � � � � rT

���

≤ 1
T

T∑
t=1

rt
�
� + 2�

T
−
(
1
T

T∑
t=1

rt
�
t� − 4�2

√
log �A�

T
− 2�

T

)

= 1
T

T∑
t=1

rt
�
� − 1

T

T∑
t=1

rt
�
t� + 4�2

√
log �A�

T
+ 4�

T

≤
√
3� log �A�

T
+ 4�2

√
log �A�

T
+ 4�

T
�

where the first inequality is due to the previous bound, the second is due to Theorem 5.2, and the last inequality
is due to Theorem 4.1. �

6. Conclusions and open problems. We view this work as a first step in bridging between reinforcement
learning and adversarial online learning. We present an efficient low-regret algorithm for an online MDP setting.
The importance of our extension of the standard MDP literature (Sutton and Barto [18]) is in relaxing the
Markovian assumption, which is implied by the MDP model and in many cases is only a relaxation of the
true non-Markovian world. An open problem that remains is extending our full-information result to banditlike
settings, where one can observe only its reward for the current state action pair. Another interesting research
direction is to significantly relax the assumptions regarding both the mixing time and unichain model.

Acknowledgments. This work was supported in part by the Information Society Technology Programme of
the European Community under the PASCAL Network of Excellence, IST-2002-506778, by a grant from the
Israel Science Foundation and an IBM faculty award. This publication reflects only the authors’ views. This
work was done while the first author was a graduate student at Tel Aviv University.

References

[1] Auer, P., N. Cesa-Bianchi, C. Gentile. 2002. Adaptive and self-confident on-line learning algorithms. J. Comput. System Sci. 64 48–75.
[2] Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.
[3] Blum, A., A. Kalai. 1999. Universal portfolios with and without transaction costs. Machine Learning 35 193–205.
[4] Borodin, A., R. El-Yaniv. 1998. Online Computation and Competitive Analysis. Cambridge University Press, Cambridge, UK.
[5] Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, D. Haussler, R. E. Schapire, M. K. Warmuth. 1997. How to use expert advice. J. ACM

44(3) 427–485.
[6] de Farias, D. P., N. Megiddo. 2006. Combining expert advice in reactive environments. J. ACM 53(5) 762–799.
[7] Hannan, J. 1957. Approximation to Bayes risk in repeated play. M. Dresher, A. W. Tucker, P. Wolde, eds. Contributions to the Theory

of Games, III. Princeton University Press, Princeton, NJ, 97–139.
[8] Helmbold, D. P., R. E. Schapire, Y. Singer, M. K. Warmuth. 1998. On-line portfolio selection using multiplicative updates. Math.

Finance 8(4) 325–347.
[9] Kakade, S. M. 2003. On the sample complexity of reinforcement learning. Ph.D. thesis, University College London, London.
[10] Kalai, A., S. Vempala. 2005. Efficient algorithms for on-line optimization. J. Comput. System Sci. 71(3) 291–307.

Even-Dar, Kakade, and Mansour: Online MDPs
736 Mathematics of Operations Research 34(3), pp. 726–736, © 2009 INFORMS

[11] Kearns, M., S. Singh. 2002. Near-optimal reinforcement learning in polynomial time. Machine Learning 49(2–3) 209–232.
[12] Kivinen, J., M. Warmuth. 1997. Additive versus exponentiated gradient updates for linear prediction. J. Inform. Comput. 132(1) 1–64.
[13] Littlestone, N., M. K. Warmuth. 1994. The weighted majority algorithm. Inform. Comput. 108(2) 212–261.
[14] McMahan, H. 2003. Planning in the presence of cost functions controlled by an adversary. Proc. 20th Internat. Conf. Machine Learning

�ICML�, Washington, DC, 536–543.
[15] McMahan, H., G. Gordon, A. Blum. 2003. Personal communication.
[16] Nilim, A., L. El Ghaoui. 2005. Robust solutions to Markov decision problems with uncertain transition matrices. Oper. Res. 53

780–798.
[17] Puterman, M. 1994. Markov Decision Processes. Wiley-Interscience, New York.
[18] Sutton, R., A. Barto. 1998. Reinforcement Learning. An Introduction. MIT Press, Cambridge, MA.
[19] Tsitsiklis, J. N. 2007. NP-hardness of checking the unichain condition in average cost MDPs. Oper. Res. Lett. 35(3) 319–323.
[20] Yu, J. Y., S. Mannor, N. Shimkin. 2009. Markov decision processes with arbitrary reward processes. Math. Oper. Res. 34(3) 737–757.

	Introduction.
	Our model: Motivation.
	Related work.

	The model.
	Mixing time.

	Best expert algorithms.
	Online MDP: Idealized setting.
	Online MDP: The general setting.
	The analysis.

	Conclusions and open problems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

