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We consider the problem of designing optimal mechanisms for settings where agents have dynamic private information.
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1. Introduction
We study the problem of designing optimal mechanisms for
environments with dynamic private information and pro-
pose a mechanism that is profit maximizing in a class of
environments that we call separable. In a separable environ-
ment, the valuation function of an agent can be decomposed
as the product (or the sum) of a function of the agent’s first
signal and another function of the agent’s future signals.

A typical separable environment is one where the agent’s
value function depends on two or more kinds of private
information, some of which are known in advance by the
agent, while the others are learned or evolve over time. One
example of such an environment is the one that occurs in
online advertisement auctions, where a publisher sells the
space on her website to advertisers. A typical advertiser
will have two distinct kinds of relevant private information:
she will know her profit margin on each sale and, because
sales will generally be performed on the advertiser’s own
website, she will also have private information on conver-
sion rates (the fraction of ads displayed that turn into sales).
Because the advertiser can be expected to know a priori
what her profit margin is, but should only learn over time
what her conversion rate is, this example constitutes a sep-
arable environment.

Our theory also applies to the field of supply chain
contracting. Consider the case of a manufacturer of a

perishable product that supplies one or more retailers, who
then sell the product onwards to the general public. This
is also an example of a separable environment since the
retailer will typically know her profit margin per good sold
in advance, but her (potentially nonstationary) demand will
have to be learned over time.
The optimal mechanism we propose, the virtual-pivot

mechanism, is quite intuitive—it combines ideas based
on the “virtual value” formulation of Myerson (1981) for
static revenue-optimal mechanism design and the dynamic
“pivot” mechanism proposed by Bergemann and Välimäki
(2010) for maximizing social welfare. The mechanism
essentially maximizes an affine transformation of the
social welfare, which corresponds to a certain virtual sur-
plus. Furthermore, the mechanism satisfies strong (periodic
ex post) notions of incentive compatibility and individual
rationality.
One notable special case of our results is the setting

with only one buyer. Namely, consider a setting where the
mechanism at each period has one item to sell to a single
buyer. The mechanism has a fixed production cost É for the
item. Under separability assumptions, the optimal mecha-
nism in this setting has a surprising simple form (with a
simple indirect implementation that we present later)—the
mechanism offers the agent a “menu” of contracts, of the
form 4p1M4p55, to the agent. If an agent chooses a con-
tract, she will be charged an up-front payment of M4p5
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and afterwards the mechanism posts a price of p > É at
each time step—the agent has the option to pay more up-
front for cheaper prices in the future. Note that even if the
agent’s valuation is increasing (or decreasing) over time
and the seller is fully aware of this fact, the optimal mech-
anism involves offering the item at all periods at a constant
price p.

In the general solution with multiple buyers, the virtual-
pivot mechanism still retains this flavor. Roughly speaking,
each agent, based on her initial type, is assigned a certain
weight function in an affine transformation of the social
welfare that is maximized by the mechanism; see §4.1. The
more the agent pays up-front, the higher her importance
will be in the social welfare function (leading to more allo-
cations to her in the future).

Our setting considers a mechanism that allows agents
to report their type every round. In particular, this implies
that they are able to re-report all of their historical pri-
vate information that has bearing on the current and future
values. Allowing re-reporting of private signals is a cru-
cial step in obtaining periodic ex post incentive guarantees.
Once we obtain periodic ex post incentive compatibility for
all future periods, we are able to provide necessary and
sufficient conditions for incentive compatibility at the first
period. We directly show that these conditions are satisfied
for our optimal mechanism.

Finally, we provide examples of how the standard
relaxation approach to dynamic mechanism design will
not succeed without adding certain assumptions, such as
separability.

1.1. Related Work

Two natural objectives in the dynamic mechanism design
are maximizing the long-term social welfare of all buy-
ers (efficiency) and maximizing the long-term revenue or
profit of a seller (optimality). With regards to maximizing
the long-term social welfare, there are elegant exten-
sions of the efficient (VCG) mechanism to quite general
dynamic settings, including the dynamic pivot mechanism
of Bergemann and Välimäki (2010) and the dynamic team
mechanism of Athey and Segal (2007) (see also Cavallo
et al. 2007, Bapna and Weber 2008, Nazerzadeh et al. 2013).

The literature on the dynamic revenue-optimal mech-
anism has been primarily focused on settings where the
agents arrive and depart dynamically over time, but their
private information remains fixed; see Vulcano et al.
(2002), Pai and Vohra (2013), Gallien (2006), Said (2012),
Gershkov and Moldovanu (2009), and Skrzypacz and Board
(2010). Several of these papers, including the first and the
last one, are motivated by a revenue management setting
where the underlying problem is dynamic because of the
arrival of customers over time, but the customers them-
selves don’t learn new private information over time. In
this setting, the mechanism designer faces a dynamic prob-
lem, but the incentive constraints of each of the agents are
essentially static because agents do not obtain any “new”

private information over the course of the mechanism. For
surveys on dynamic mechanism design, see Bergemann and
Said (2011), and Parkes (2007).
We consider a setting where the private information of

the agents changes over time, a line of research that was
pioneered by Baron and Besanko (1984) and Courty and
Li (2000). The latter provide an optimal mechanism for an
environment where agents have private information about
the future distribution of their valuations. Akan et al. (2008)
showed how the optimal sequential screening mechanism
changes if buyers have information about the time they
learn their valuations. Battaglini (2005) studies a setting
with a single agent whose private information is given by a
two-state Markov chain and shows that the optimal alloca-
tion converges over time to the efficient allocation. In con-
trast to the results in Battaglini (2005), in the setting we
consider, the allocation distortion generated by the agents’
initial private information does not disappear over time (for
a more detailed discussion, see §4.1, also Zhang 2012,
Boleslavsky and Said 2012). See Battaglini (2005, 2007)
also for results on optimal dynamic mechanism design in
the absence of dynamic commitment power.
A closely related work to ours is that of Ëso and Szentes

(2007), who study a two-period model where each agent
receives a signal at the first period and the seller can also
allow each agent to receive an additional private signal at
the second period. Under certain concavity and monotonic-
ity conditions on the signals, they show that the optimal
mechanism allows the agents to receive their second sig-
nals; however, agents do not obtain any rents from the fact
that the second-period signal is private. They also propose
a “handicap” auction for the case where the agents’ valua-
tions are given by the sum of the first- and second-period
signals. We use similar ideas and show that for a broad
class of environments, the seller is able to extract the infor-
mation rent associated with all signals except the initial
one, even if the seller does not control the agents’ abil-
ity to obtain further private signals. However, as we show
in §6, there exist dynamic settings where the seller can-
not extract the entire information rent from future signals.
We also note the work in Deb (2008), which provides an
optimal mechanism in a setting with only one buyer where
the value is Markovian in the previous value, among other
technical conditions.
Another paper closely related to ours is by Pavan et al.

(2011). Their work is concurrent and has been devel-
oped independently from ours. They provide an envelope
theorem and associated necessary conditions for mecha-
nisms to be optimal in fairly general dynamic settings.
They also provide some sufficient conditions for optimal-
ity of dynamic mechanisms that neither encompasses nor
is encompassed by ours. We compare our necessary and
sufficient conditions for optimality with theirs in §4.4.

1.2. Organization

We organize our paper as follows. In §2, we formalize
our model, define separability, incentive compatibility, and
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optimality of mechanisms. In §3, we discuss our approach
for designing optimal mechanisms. In §4, we propose our
mechanism and state our main optimality result. Special
cases (including the setting with only one buyer) are con-
sidered in §5. Section 6 provides simple examples showing
how the usual incentive constraints from static mechanism
are insufficient for the dynamic case. It also shows that
without our separability assumptions, the particular relax-
ation approach we take is insufficient. The online appendix
contains all the proofs. Supplemental material to this paper
is available at http://dx.doi.org/10.1287/opre.2013.1194.

2. The Model
In this section, we formalize our model and define con-
cepts such as incentive compatibility and optimality of
mechanisms.

2.1. The Dynamic Environment

We consider a discrete-time, Ñ-discounted infinite-horizon
4t = 011121 0 0 05 model that consists of one seller and n

agents (buyers). The seller decides upon an action a

t

at
each period t among the feasible set of actions A

t

, at a cost
of c

t

4a

t

5 to the seller, where at = 4a01a11 0 0 0 1at

5 represents
all the actions taken by the mechanism up to time t.

At every period, each agent i 2 811 0 0 0 1n9 receives a pri-
vate signal s

i1 t

2 S

i1 t

. In particular, we make the following
assumption about the first signal s

i10 throughout the paper:

Assumption 2.1. For each agent i, s
i10 2 60117 is real val-

ued and distributed according to F

i

. Furthermore, assume
that F

i

is strictly increasing and has a density, which we
denote by f

i

.

This first signal summarizes all the initial private infor-
mation of the agent (which has bearing on her entire stream
of valuations). Furthermore, for all t æ 1, each agent also
receives a private signal s

i1 t

2 S

i1 t

—here we are not con-
cerned with whether or not these future signals are real (the
set S

i1 t

is arbitrary for t æ 1).
The type of agent i at time t is the sequence of signals of

the buyer i up to (and including) time t, which is denoted
by s

t

i

= 4s

i101 0 0 0 1 si1 t5. The type provides a summary of all
the agent’s private information, which has bearing on all her
current and future valuations. For notational convenience,
we let vector s

t = 8s

t

i

9

i26n7 denote the (joint) types of all
agents at time t. At each period t, agent i obtains value
v

i1 t

4a

t

1 s

t

i

5, which is a function of her type and the seller’s
past and current actions. We assume quasi-linear utilities
and denote the payment of agent i at time t by p

i1 t

, so
that the (instantaneous) utility of agent i at time t is given
by u

i1 t

= v

i1 t

4a

t

1 s

t

i

5É p

i1 t

. We also assume throughout the
following regularity condition.

Assumption 2.2. The partial derivative °v

i1 t

4a

t

1 s

i101

0 0 0 1 s

i1 t

5/°s

i10 exists for all i, t, a
t , and s

t

i

, and it is bounded
by V̄ <à.

We now specify the stochastic process over the signals.
The signal s

i1 t

that agent i receives at time t may be cor-
related to her previous signals s

i101 0 0 0 1 si1 tÉ1 and the past
actions of the seller a01 0 0 0 1atÉ1, but it is independent (con-
ditionally on the seller’s actions) of all signals of the other
agents. Formally, the stochastic signal s

i1 t

is determined
by the stochastic kernel K

i1 t

4s

i1 t

óatÉ1
1 s

tÉ1
i

5. We make the
assumption that the first signal is independent of the future
signals:

Assumption 2.3. For each agent i, the distribution of the
initial signal s

i10 is independent of the future signals s

i1 t

for t æ 1.

Even under this assumption, importantly, the value of
agent i at any future period (t æ 1) may still be corre-
lated with the signal s

i10. Here, we only explicitly assume
s

i10 to be independent of the future—arbitrary dependencies
among future signals are permitted.
We also assume that the mechanism has the ability to

exclude agents from the system at time t = 0. That is, it
can select a subset of the agents that will obtain no value
(and will not make payments) at any period t æ 0. The
exclusion of an agent from the system does not impact the
value obtained by the other agents if the mechanism still
takes the same sequence of actions a11 0 0 0 1at

.

Assumption 2.4. The set of feasible actions A0 at time
t = 0 is equal to 28110001n9, that is, the set of all subsets of
811 0 0 0 1n9. If i y a0, then agent i is excluded from the sys-
tem, i.e., p

i1 t

= 0 and v

i1 t

4a

t

1 s

t

i

5= 0 for all t, at , and s

t

i

.
No agent obtains immediate value from the choice of a0,
i.e., v

i104a01 si105= 0 irrespective of whether i 2 a0 or not.
Also, the value obtained by each agent does not depend on
the exclusion of other agents. In addition, the cost incurred
by the mechanism only depends on the actions, not on the
excluded agents.

The assumption implies that for any pair of actions
a01a

0
0 in A0 such that i 2 a0 and i 2 a

0
0, the value

v

i1 t

4a01a11 0 0 0 1at

1 s

t

i

5 = v

i1 t

4a

0
01a11 0 0 0 1at

1 s

t

i

5 for all t,
a11 0 0 0 1at

, and s

t

i

. Also, c

t

4a01a11 0 0 0 1at

5 = c

t

4a

0
01a11

0 0 0 1a

t

5 for all t—of course, exclusion of an agent may
change the choice of the actions taken by the mechanism.
The assumption that the agents do not obtain value at t = 0
is made without loss of generality and for simplicity of
presentation. Nevertheless, the mechanism may charge the
agents p

i1 t

6= 0 at that time. The above assumption simpli-
fies satisfying the participation constraints. For example, if
an agent only obtains negative values from the actions, she
would be excluded from the mechanism. Observe that if the
actions taken by the mechanism correspond to allocations
of items to agent, this assumption can be simply satisfied.
Throughout the paper, suppose Assumptions 2.1–2.4 hold.



Kakade, Lobel, and Nazerzadeh: Optimal Dynamic Mechanism Design
840 Operations Research 61(4), pp. 837–854, © 2013 INFORMS

2.2. Separability

We now define a class of environments for which we
construct optimal dynamic mechanisms. To be able to con-
struct such mechanisms, we need to assume some structure
on how the agents’ values relate to their signals. The next
property specifies two natural relationships between the sig-
nals and the values.

Property 2.1 (Functional Separation). An environ-
ment satisfies functional separation if the value func-
tion of each agent is either multiplicatively or additively
separable:

• The value function of agent i is multiplicatively sep-
arable if there exists functions uniformly bounded A

i

and
B

i1 t

such that:

v

i1 t

4a

t

1 s

t

i

5=A

i

4s

i105Bi1 t

4a

t

1 s

i111 0 0 0 1 si1 t50 (1)

• The value function of agent i is additively separable if
there exists uniformly bounded A

i

, B
i1 t

, C
i1 t

such that:

v

i1 t

4a

t

1 s

t

i

5=A

i

4s

i105Ci1 t

4a

t

5+B

i1 t

4a

t

1 s

i111 0 0 0 1 si1 t50 (2)

Definition 2.1. We call an environment separable if
Assumption 2.3 and Property 2.1 hold.1

Separability specifies specific structural forms in how an
agent’s initial signal relates to her value function. Specifi-
cally, it ensures that it relates to the value function at each
period via either a multiplicative or an additive form.

A curious reader might wonder why we would specify
such structural assumptions for the initial signal, but
impose so little structure on how future signals are corre-
lated or how they relate to the value function. The answer
is that the initial signals are the agents’ private informa-
tion when contracting first occurs. Therefore, the seller will
have to pay an information rent for the agents’ initial sig-
nals, but might hope not to pay information rent for signals
the agents do not yet possess when contracting happens.
This kind of decoupling of information rents between initial
and future signals is not always possible in nonseparable
environments, as we illustrate in §6, but the fact that it
is indeed doable in separable environments is one of the
messages of our paper.

2.3. Applications of Separable Environments

We now describe some examples of separable settings
where the theory we develop is applicable.

Online Advertising. In Internet advertising (sponsored
search), online publishers sell the space on their webpages
via auctions to advertisers. Typically, an advertiser places
an ad in order to: first, draw a user to visit the adver-
tiser’s website (via a click on the displayed ad), and then,
subsequently, have the user perform a desired transaction
such as purchasing a product or subscribing to a mailing
list (cf. Mahdian and Tomak 2007, Nazerzadeh et al. 2013,
Agarwal et al. 2009). The value that an advertiser obtains

from the display of an ad depends both on the “conversion
rate” (the probability that the user who sees the ad will
choose to click on it and subsequently perform the desired
transaction) as well as the profit that the firm obtains when
the user performs the aforementioned transaction.
We assume that advertisers privately know the profit

they obtain per transaction but are uncertain about the
conversion rates. For instance, consider a firm (e.g.,
Amazon, Barnes and Noble) that sells books online and,
in order to attract customers, advertises on search engines.
When a user searches for a newly released book, the firm
a priori knows the profit margin of selling that book, but
only learns the conversion rate over time. In our model,
the profit margin of each sale is represented by s

i10. The
action a

t

represents which ads are shown to a given user
and, potentially, in which slot each ad is shown. Every time
the ad is shown to a user, the advertiser would obtain more
information, represented by s

i1 t

s, and updates her belief
about probability of a purchase. Therefore, v

i1 t

4s

t

i

5= s

i10 ⇥
Pr6purchase óat

1 s

i111 0 0 0 1 si1 t7. In the case where the pub-
lisher has either a single slot or a set of slots of identical
quality, the typical approach used to update the proba-
bility of purchase is the following: the firm starts from
a Beta-distributed prior, which is parameterized by the
number of successful x

i1 t

and failed y

i1 t

conversions, and
updates one of these two parameters every time the ad
is displayed by incrementing either the number of suc-
cesses or the number of failures depending on whether a
transaction occurred. In this case, B

i1 t

4a

t

1 s

i111 0 0 0 1 si1 t5 =
Pr6purchase óat

1 s

i111 0 0 0 1 si1 t7= x

i1 t

/4x

i1 t

+ y

i1 t

5. Note that
even in the simple case of a single ad slot and a Beta-
distributed prior, the simplest representation of adver-
tiser i’s knowledge about its conversion rate at time t, the
pair 4x

i1 t

1y

i1 t

5, is a two-dimensional quantity.
What we call conversion rate is sometimes decomposed

into two terms: a “click-through” rate that represents the
probability that a user will click on an ad and a “con-
version rate” that captures the probability that a desired
transaction occurs given that the ad was clicked. Whereas
conversion rates are typically learned privately by the
advertiser, both the search engine and the advertiser are
generally able to observe clicks on ads. To accurately cap-
ture the simultaneous private learning of conversion rates
and public learning of click-through rates, we need to
slightly expand the model to incorporate public signals
as well as private ones. This can be done by incorpo-
rating new signals s̃

i1 t

that are observed by both adver-
tiser i and the search engine. In this case, the value
of a click would be represented by v

i1 t

4s

t

i

1 s̃

t

i

5 = s

i10 ⇥
Pr6click óat

1 s̃

i111 0 0 0 1 s̃i1 t7 ⇥ Pr6purchase given click óat

1

s̃

i111 0 0 0 1 s̃i1 t1 si111 0 0 0 1 si1 t7. Even though we describe our
model and results without such public signals in order to
simplify the notation throughout the paper, all of our results
are valid for this slightly extended model as well.
Consider now a different online advertising setting where

advertisers learn over time the monetary value of users
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referred to them by the search engine. Assume that each
user’s worth to advertiser i is equal to à

i

+ ò

i

, where à

i

needs to be learned over time (its prior is a Gaussian distri-
bution with mean å

i

and standard deviation ë

i

) and ò

i

is a
zero-mean shock with standard deviation ä

i

. Suppose that
at the time of contracting, the search engine has already
sent N

i10 users to advertiser i, and the sum of the monetary
worth of these N

i10 users constitutes advertiser i’s initial
private information s

i10. Let si1 t be equal to the monetary
worth of user tÉ1 if that user was allocated to advertiser i
and 0 if that user was not allocated to advertiser i. Then,
this problem can be formulated as an additively separable
environment. By Bayesian statistics, the expected value of
user t to advertiser i is

v

i1 t

=
p
ë

2
i

+ä

2
i

4s

i10 +
P

t

t

0=1 si1 t05+ë

i

å

ip
ë

2
i

+ä

2
i

4N

i10 +
P

t

t

0=1 ai1 t

0É15+ë

i

1

where a
i1 t

0É1 is an indicator of whether user t0 É1 was allo-
cated to advertiser i and, therefore, the advertiser received
a new signal at time t0 about the average value of the users.
The environment is additively separable because, given the
actions of the mechanism a

t , the function above is a lin-
ear combination of initial signal s

i10 and the future signals
s

i111 0 0 0 1 si1 t .
Supply Chain Contracting: Consider a manufacturer of

a perishable good who supplies one or more retailers over
time. The retailers face a competitive market and sell the
good at a market price of ê, but each retailer i has its
own private marginal operating cost, denoted by É

i

. The
production cost of the manufacturer is given by c4 · 5. The
action a

t

of the manufacturer can be decomposed into
4a11 t1 0 0 0 1an1 t

5 and represents how many units are shipped
to the retailer in period t. Without loss of generality, we
assume there is no lead time and the retailer receives the
shipped units immediately. Retailer i faces demand d

i1 t

at each period t, and the demand she encounters is pri-
vate information. The revenue obtained by a retailer at
period t is thus v

i1 t

4É

i

1d

t

i

5= 4êÉÉ

i

5⇥min8d
i1 t

1a

i1 t

9. That
is, the seller can sell the minimum between the demand she
observes and the number of units she has in stock. Since
the goods are perishable, there is no inventory carryover
or inventory costs. The term êÉ É

i

is initial private infor-
mation of the retailer and, thus, is represented by s

i10 is
our model. We do not assume that the demand is stationary
or has any particular structural form. In particular, we can
let the signal s

i1 t

at time t contain information about both
current demand d

i1 t

and future demand d

i1 t

0 for t0 > t. As
such, this model can allow for the retailers to be able to
better forecast future demand than the manufacturer.

2.4. Mechanisms, Incentive Constraints,
and Optimality

A mechanism M4q1p5 is defined by a pair of an alloca-
tion rule q4 · 5 and a payment rule p4 · 5. We let Q denote

the set of all allocation rules. By the Revelation Princi-
ple (cf. Myerson 1986), without loss of generality, we focus
on (dynamic) direct mechanisms.2 We assume the seller has
full dynamic commitment power.
At each period t, each agent i makes a report, denoted

by ŝ

t

i

, of her type st
i

. Using our standard shorthand notation,
we denote the joint reports of all agents by ŝ

t = 8ŝ

t

i

9

i26n7.
Note that because s

t

i

= 4s

i101 0 0 0 1 si1 t5 includes the set of all
signals that each agent has received, each agent re-reports
all of their previous signals at every period. The report of
an agent can be conditioned on the history, which we now
specify.
The public history at time t, denoted by h

t

, is the
sequence of reports and actions of the mechanism until
period t É 1; namely, h

t

= 4ŝ01 a01 ŝ

1
1 a11 0 0 0 1 ŝ

tÉ1
1a

tÉ15.
The private history of agent i at time t, denoted by h

i1 t

,
includes the public history and her current type (sequence
of signals she received up to, and including, time t), i.e.,
h

i1 t

= 4s

i101 ŝ01 a01 si111 ŝ
1
1 a11 0 0 0 1 si1 tÉ11 ŝ

tÉ1
1 a

tÉ11 si1 t50

The allocation and payment rules are functions of the
public history at time t, h

t

, and the reports of all agents at
time t, ŝt . The allocation rule determines the action taken
by the mechanism, and the payment rule determines the
payment of each agent.
The reporting strategy of agent i, denoted by R

i

, is a
mapping from her private history h

i1 t

to a report of her
current type ŝ

t

i

. Mechanism M and the reporting strategy
profile R = 8R

i

9

i26n7 determine a stochastic process which
is described in Figure 1.
We now define the incentive constraints of the mech-

anism. Denote the expected (discounted) future value of
agent i under the (joint) reporting strategy R in mechanism
M by:

V

M1R

i

= ⇧
 àX

t=0

Ñ

t

v

i1 t

4a

t

1 s

t

i

5

�

and the expected (discounted) future utility (of i under R
in M) as:

U

M1R

i

= ⇧
 àX

t=0

Ñ

t

�
v

i1 t

4a

t

1 s

t

i

5Ép

i1 t

��
1

where the expectation is with respect to the stochastic pro-
cess induced by the reporting strategy and the mechanism.

Figure 1. A generic mechanism.

At each period t æ 0, the following occurs:
1. Each agent i receives her private signal s

i1 t

⇠
K

i1 t

4 · óatÉ1
1 s

tÉ1
i

5.
2. Each agent i provides a report, ŝt

i

, of her current type,
s

t

i

= 4s

i101 0 0 0 1 si1 t5, as determined by her private history h

i1 t

.
In particular, ŝt

i

=R

i

4h

i1 t

5.
3. As a function of the public history, h

t

, and the current
reports, ŝt , the mechanism determines the action a

t

2A
t

and
the payments p

i1 t

for each agent i. In particular, a
t

= q4h

t

1 ŝ

t

5

and the joint prices are 8p

i1 t

9

i26n7 = p4h

t

1 ŝ

t

5.
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Similarly, for the expected value and utility of agent i,
conditioned on a private history h

i1 t

and type of the other
agents stÉi

, we have:
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Note that this expectation is well defined (even on pri-
vate histories which have probability 0 under R), since the
reporting strategies are mappings from all possible private
histories of agent i (and we have conditioned on the public
history and current joint type).

Roughly speaking, the notion of incentive compatible is
one in which no agent wants to deviate from the truthful
strategy, as long as all other agents are truthful. This
involves a somewhat delicate quantification with regards to
the history. Our (weaker and stronger) notions of incen-
tive compatibility are identical to those in Bergemann and
Välimäki (2010).

Definition 2.2 (Incentive Compatibility). Let T de-
note the (joint) truthful reporting strategy.

• Dynamic mechanism M is (Bayesian) incentive
compatible (IC) if, for each agent i, truthfulness is a best
response to the truthful strategy of other agents—precisely,
if for each i and R

i

,

U

M1T
i

æU

M1 4R

i

1TÉi

5

i

0

• Dynamic mechanism M is periodic ex post incentive
compatible if, for each agent i and at any time t,
truthfulness is a best response to the truthful strategy of
other agents—precisely, if for each i and time t, report-
ing strategy R

i

, private history h

i1 t

, and current type of the
other agents stÉi

:

U

M1T
i1 t

4h

i1 t

1 s

t

Éi

5æU

M14R

i

1TÉi

5

i1 t

4h

i1 t

1 s

t

Éi

50 (3)

Note that the (weaker) Bayesian notion of IC implies
that the truthful reporting strategy is a best response from
a private history that is generated under T with probabil-
ity 1. In contrast, the (stronger) periodic ex post notion
demands that the truthful strategy is a best response on any
private history, even those that have probability 0 under T
(e.g., those histories where agents misreported in the past).
See Bergemann and Välimäki (2010) for further discussion.

The notion of individual rationality is one, where at the
equilibrium, the agents choose to participate (as it demands
that the agents’ utilities be nonnegative). Precisely,

Definition 2.3 (Individual Rationality). Let T denote
the (joint) truthful reporting strategy.

• Mechanism M is (Bayesian) individually rational (IR)
if, for each agent i, the expected future utility under the
truthful strategy is nonnegative, i.e., UM1T

i

æ 0.

• Mechanism M is periodic ex post individually rational
if the expected future utility is nonnegative for each agent i
and time t, private history, h

i1 t

, and joint type of the other
agents stÉi

, i.e., UM1T
i1 t

4h

i1 t

1 s

t

Éi

5æ 0.

The expected profit of a mechanism M is the discounted
sum of all payments of the agents minus the cost of the
actions

ProfitM = ⇧
 àX

t=0

Ñ

t

✓
Éc

t

4a

t

5+
nX

i=1

p

i1 t

◆�
(4)

under the (joint) truthful reporting strategy T . The objec-
tive of the seller is to maximize this expected profit,
subject to both the incentive compatibility and individual
rationality constraints. Precisely,

Definition 2.4 (Optimality). A Bayesian individually
rational and Bayesian incentive-compatible mechanism
is optimal if it maximizes the expected profit among
all Bayesian individually rational and Bayesian incentive
compatible mechanisms.

Note that the optimal mechanism is only required to sat-
isfys the weaker Bayesian incentive constraints. This defini-
tion of optimality guarantees that the mechanism obtains an
expected profit higher than (or at least equal to) any other
mechanism that is incentive compatible and individually
rational. Ideally, we might hope for an optimal mechanism
that also satisfies the stronger (periodic ex post) incentive
constraints, which ensures truthfulness is a best response
even if agents have deviated in the past. As we show,
the mechanism we propose, the virtual-pivot mechanism,
enjoys these stronger guarantees.

3. A Relaxation Approach
We now provide a methodology for optimal dynamic
mechanism design. The relaxation approach we take is the
standard one also used in Ëso and Szentes (2007), Deb
(2008), and Pavan et al. (2011). The difficulty is in “unre-
laxing,” i.e., showing that a candidate for the optimal policy
satisfies the more stringent dynamic IC constraints.
Here, we are able to provide both necessary and

sufficient conditions for dynamic IC. In particular, the use
of the periodic ex post notion of incentive compatibility is
critical in this characterization.

3.1. Relaxing

In this section, we consider a simpler, yet closely related,
problem where we can utilize known static mechanism
design techniques to design an optimal mechanism—these
techniques are also used in Ëso and Szentes (2007),
Deb (2008), and Pavan et al. (2011). The idea is to relax the
optimization problem (of finding the optimal mechanism)
by only imposing certain incentive constraints that arise in
a simpler version of the problem. Roughly speaking, we
attempt to solve a (simpler) less-constrained optimization
problem. The critical issue is in showing that the solution
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to this less-constrained problem is also the optimal solution
for the original problem.

Definition 3.1 (Relaxed Environment). Consider an
environment where only the initial type s

i10 is private to
each agent i, whereas all her future signals are observed
by the mechanism. We define this to be the relaxed
environment and refer to our original environment as the
dynamic environment.

Whereas the mechanism in the relaxed environment has
full information with regard to the agents signals from
t æ 1, note that s

i10 may affect all the future values of the
agent. Observe that any direct mechanism in the dynamic
environment induces a mechanism in the relaxed environ-
ment in a natural way: for t æ 1, simply use the agents
actual signals s

i111 0 0 0 1 si1 t as well as the reported initial
signal ŝ

i10 as the reported type 8ŝ

t

i

9 (as the input to the
allocation and payment rules of the mechanism).

The following lemma is a rather straightforward
observation.

Lemma 3.1. Let E be a dynamic environment and Erelaxed

be the corresponding relaxed environment. We have that:
• If M is an incentive compatible and individually ratio-

nal mechanism in E, then it is an incentive compatible and
individually rational mechanism in Erelaxed.

• Let R? be the optimal revenue in Erelaxed. Suppose a
(Bayesian) incentive compatible and individually rational
mechanism M in E has revenue R

?; then, M is optimal for
both E and Erelaxed.

This lemma suggest a natural optimal mechanism
design approach: first, find an allocation rule q

? of an
optimal mechanism in the relaxed environment Erelaxed; then
determine if there exists a pricing rule for p

? such that:
(1) the mechanism 4q

?

1p

?

5 is IC and IR in the dynamic
environment E; (2) the expected revenue it achieves is R?.
If such a pricing is possible, then 4q

?

1p

?

5 is optimal in E.
In our separable environments, we show that this approach
is applicable. Furthermore, in §6, we discuss the limitations
of this approach, where we provide certain nonseparable
environments for which the optimal revenue in E is strictly
less than the optimal revenue in Erelaxed.

Envelope and Revenue Lemmas. Since in the relaxed
environment the only piece of private information for each
agent i is s

i10, using the standard approach from static
mechanism design (see Myerson 1981, Milgrom and Segal
2002), we provide the following lemma.

Lemma 3.2 (Envelope Condition). Suppose that the
mechanism M is IC in the relaxed environment. Then for
all i, s

i10, and s

0
i10,
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i

4s

i101sÉi105ÉU
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0
i101sÉi105

=
Z

s

i10

s

0
i10

⇧
 àX

t=0

Ñ

t

°

°s

i10
v

i1t

4a

t

1s
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�
dz1

(5)

where U
i

4s

i101 sÉi105 is the utility of agent i under the truth-
ful strategy in M, where the initial types are s

i10 for i and
sÉi10 for the other agents.

Again, using standard techniques from static mecha-
nism design, we can use the envelope condition above to
establish the profit of any IC mechanism in the relaxed
environment.

Lemma 3.3 (Expected Profit). Suppose that the mecha-
nism M is IC in the relaxed environment. Then, the expected
profit obtained by the mechanism, ProfitM, is equal to:

⇧
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where the expectation is taken over s
i10 and sÉi10.

This lemma can be used to derive a candidate for the
optimal allocation rule: if we pick an allocation rule that
maximizes the equation above and pick a payment rule that
makes it both IC and IR, then we will have an optimal
mechanism.

3.2. The Relaxed Environment and the
Virtual Welfare

In the relaxed environment, we can use the standard
techniques of static mechanism design (Myerson 1981,
Milgrom and Segal 2002) to establish an upper bound
on the profit of the optimal mechanism. The next lemma
establishes that in separable environments, the profit of any
IC mechanism is an “affine transformation” of the social
welfare of the agents. The affine factors are given by the
functions Å and Ç in the lemma. Note that they only depend
on the initial signals (and the actions of the mechanism)
and do not explicitly depend on the signals from t æ 1.
This observation underlies our construction of the optimal
mechanism.

Lemma 3.4. Consider the relaxed environment and an
incentive-compatible mechanism M. Suppose the environ-
ment is separable (as in Definition 2.1). Then, under the
stochastic process induced by M and the truthful reporting
strategy, the expected discounted sum of payments by each
agent i is equal to

⇧
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t
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�
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where the functions Å
i

and Ç

i1 t

are given by:
• For multiplicatively separable values,
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• For additively separable values,
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The lemma above yields a bound on the profit of the
optimal mechanism for the relaxed environment. Recall
that Lemma 3.1 established that the profit for the dynamic
environment is bounded by the profit from the relaxed
one. Combining these two lemmas and the fact that an IR
mechanism must satisfy U

M1T
i

4s

i10 = 05æ 0, we obtain the
following profit bound.

Corollary 3.1. Under the assumptions in Lemma 3.4, for
both the relaxed and the dynamic environments, the ProfitM

of any incentive compatible and individually rational mech-
anism M is bounded as follows:

ProfitM
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(8)

where Q is the set of all allocation rules.

The bound above determines an upper bound on the
profit of any optimal dynamic mechanism. This bound is
obtained by the allocation rule of the optimal mechanism
for the relaxed environment. It does not, however, imme-
diately yield an optimal dynamic mechanism since it does
not determine the payments for the dynamic setting. In the
next subsection, we discuss how to “unrelax,” that is, how
to obtain a mechanism for the dynamic setting from the
allocation rule that maximizes the bound above.

3.3. Unrelaxing

From the relaxed environment, we can find a candidate for
an optimal allocation rule. The main challenge here is how
to find a payment rule and show that such a mechanism sat-
isfies dynamic IC constraints. It turns out that it is natural
to break this into two stages.

The first step is understanding how to ensure IC for
t æ 1. Here, there seems to be no general methodology
in the literature (note that we are not assuming any struc-
ture on the stochastic process for the signals s

t

, for t æ 1).
Our approach involves going one step further and trying
to insure periodic ex post IC for periods t æ 1. Recent
work by Bergemann and Välimäki (2010) shows how to
guarantee periodic ex post IC in the context of maximizing
social welfare. Our results make use of this, but to do so, a
critical conceptual step is to allow agents to re-report their
entire type at every period. This way, we are able to obtain
periodic ex post IC for t æ 1.

For t = 0, where s
i10 is real valued, we explicitly charac-

terize the necessary and sufficient conditions for dynamic
IC based on the fact that we have a periodic ex post IC
mechanism for periods t æ 1. This is a key technical step
in our proof.

Re-Reporting and Periodic Ex Post IC. Recall that
each agent i reports her entire type s

t

i

= 4s

i101 0 0 0 1 si1 t5 at
each period t, not just her most recent private signal s

i1 t

.
At the first glance, it may seem that this re-reporting
of past private signals is redundant. It might even seem
problematic, because it allows agents to give conflicting
reports of their histories of signals received.3 However,
there are a few reasons why this approach is quite natural,
both conceptually and technically.
Re-reporting significantly simplifies the task of obtaining

periodic ex post IC guarantees. It gives an opportunity for
agents that have reported untruthfully in the past to cor-
rect their past misreports and, in this way, return to truthful
reporting course. In fact, it is unclear how to obtain such a
guarantee for a mechanism that does not allow re-reporting
in a setting with the same generality as ours (recall that
we allow the signals for periods t æ 1 to be drawn from
arbitrary sets). Re-reporting enables us to construct a peri-
odic ex post IC mechanism because it creates a way for the
agents to inform the mechanism that previously submitted
information is false and that the mechanism should instead
consider a different, resubmitted history of events.
Obtaining periodic ex post IC guarantees is important for

two reasons: first, it makes it far more likely that agents
will indeed behave in an incentive-compatible way. With
such guarantees, the agents’ best response will always be
to truthfully report their signals, no matter the history of
events. If we could provide only Bayesian IC guarantees,
the agents would only want to be truthful if they believed
everyone had been truthful in every period up to that point
in time. Given that we are designing mechanisms for com-
plex dynamic settings, it is highly desirable to have the
agents have proper incentives irrespective of the history
of events. Second, periodic ex post incentive compatibility
serves to break the problem of designing mechanisms for
dynamic settings into simpler, smaller problems. That is, if
we know that mechanism is periodic ex post IC from period
t + 1 onwards, we know that the agent will not have a
profitable multiperiod deviation that involves a misreport in
period t and a subsequent period t

0 æ t+1. No matter what
the agent does in period t, her incentive will be to be truth-
ful from period t+ 1 onwards due to the periodic ex post
IC guarantees. Therefore, proving the mechanism is peri-
odic ex post IC from period t+ 1 onwards also means the
only potential profitable deviations for the agent at period t

are single-period deviations at that period. Checking that
the agent does not have such single-period profitable devi-
ations is a much easier task than showing that the agent
does not have complex multiperiod profitable deviations.
Moreover, once we build a mechanism with re-reporting

that is periodic ex post IC, we can also convert it to another
mechanism without re-reporting that is still Bayesian IC.
LetM be a periodic ex post IC mechanism with re-reporting
and consider the mechanism ∞M with the same allocation
and payment rule as M, but where each signal is only
reported once. That is, each agent i only reports signal s

i1 t
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at time t, and the period t

0 æ t report of signal s
t

is replaced
in ∞M by the unique report ŝ

i1 t

. Then, this new mechanism is
Bayesian IC. The reason is as follows: re-reporting extends
the set of strategies (deviations) of the agents. Being truth-
ful is a strategy that is available in both mechanisms M
and ∞M. If being truthful is a Nash equilibrium of the game
with a larger set of strategies, then it must also be a Nash
equilibrium of this game with a restricted set of strategies.
Therefore, Bayesian IC is maintained when we remove
re-reporting. We note that even if our goal is to construct
a Bayesian IC mechanism where agents report their types
only once, considering the expanded mechanism where
agents re-report their signals is still a useful technique in
proving incentive compatibility. The technique we present
here for proving Bayesian IC by considering a mechanism
with re-reporting is novel and markedly different than the
standard approach in literature, where the typical approach
is to either restrict the types to be Markovian or to assume a
structure on the possible signals so that every possible mis-
report could be corrected by a future second misreported
signal. The sponsored search application, for example, is
one where misreports cannot always be corrected by a sec-
ond misreport, as we argued in the paragraph above. The
types are also not Markovian unless you include the profit
from a conversion and the number of successful and failed
conversions in the type, in which case the agents would be
reporting in every period all those pieces of information,
creating a mechanism with effective re-reporting.

Necessary and Sufficient Conditions for IC. In the
previous subsection, we argued that re-reporting simplifies
the task of constructing a periodic ex post IC mechanism.
We postpone the discussion of how we can use re-reporting
to actually construct a periodic ex post IC mechanism
until §4.

For now, assume that a mechanism M is periodic ex post
IC for all periods t æ 1. That is, for any period t æ 1, any
agent i, private history h

i1 t

, types of other agents s

t

Éi

, and
reporting strategy R

i

, Equation (3) is satisfied. We now pro-
vide necessary and sufficient conditions for such a mecha-
nism to be IC (at period t = 0).

Consider a subset of an agent’s reporting strategies that
we denote by x

0 ! x. Define x

0 ! x as the reporting
strategy in which the agent reports x

0 as her first type s

i10

(at t = 0), and subsequently (re-)reports it as x in all future
periods (t æ 1). Furthermore, under the strategy x

0 ! x,
all other signals s

i1 t

(for t æ 1) are truthfully reported. In
other words, at t = 0, she initially reports Ŝ

i10 = x

0, and, for
t æ 1, she reports ŝt

i

= 4x1 s

i111 si121 0 0 0 1 si1 t5. In x

0 ! x, we
also allow x

0 and x to be functions of s

i10. For example,
the truthful strategy T

i

can be represented as s
i10 ! s

i10.
The expected utility of agent i under mechanism M

and reporting strategy x

0 ! x given her initial type s

i10

is U

M14x

0!x1TÉi

5

4s

i105. For notational convenience, we drop
the explicit dependence on the mechanism and the other

agents’ playing the truthful strategy and denote this by

U

x

0!x

4s

i105=U

M14x

0!x1TÉi

5

4s

i1050 (9)

Similarly, we define the expected value of agent i under
strategy x

0 ! x, assuming other agents are truthful by:
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5

4s
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We also use the notation

U

x

0!x

4s

i101 sÉi105 and V

x

0!x

4s

i101 sÉi1051

when we condition on the initial types of the other
agents sÉi10.
Suppose the mechanism M is one that is periodic ex post

IC for periods t æ 1. Under such a mechanism, if agent i
deviates at period t = 0, while all other agents are truthful,
agent i’s best response strategy at all future periods t æ 1
is to reveal her true type. Therefore, if her true first type is
s

i10, then to verify if truthfulness is a best response, we only
need to verify that the truthful policy provides more util-
ity then all misreporting strategies of the form s

0
i10 ! s

i10.
Therefore, if mechanism M is periodic ex post IC for peri-
ods t æ 1, then it is also IC at t = 0 if, and only if, for any
true type x and time 0 report x0,

U

x!x

i

4x5æU
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Subtracting U

x

0!x

0
i

4x

0
5 from both sides, we get the follow-

ing characterization: the mechanism M is IC if, and only
if, for all x and x

0,
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4x5ÉU
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Furthermore M is periodic ex post IC if the above holds
where we condition on the other types sÉi10. That is, the
mechanism is periodic ex post IC if for all x, x0, and sÉi10,
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i
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x

0!x

0
i
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These observations are useful in that it we can use
envelope conditions to precisely characterize incentive
compatibility in terms of the expected values of the agents.
First, we obtain that periodic ex post IC for t æ 1 implies
the following lemma.

Lemma 3.5 (Periodic Ex Post IC). Suppose that mecha-
nism M satisfies the periodic ex post IC conditions for all
t æ 1. Then, for all x and x

0 in 60117, we have
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It is straightforward to show that the partial derivative
exists and, for any x, y, and z, is given by
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where the expectation is under joint strategy 4x! y1T Éi

5

in M (see Lemma A.1 in the appendix).
The following lemma uses the characterization above to

obtain both necessary and sufficient conditions for incentive
compatibility (at t = 0).

Lemma 3.6. (Necessary and Sufficient Conditions
for IC). Suppose that the mechanism M satisfies the peri-
odic ex post IC conditions for all t æ 1. Then, M is IC for
all t æ 0 if, and only if, both conditions below are satisfied:

• (Envelope Condition) For all x and x

0,
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• (Interval Dominance) For all x and x

0,
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Furthermore, M is ex post periodic IC if and only if the
previous two conditions are satisfied when we condition on
every possible other initial types ŝÉi10.

The result above is analogous to the characterization
of incentive compatibility in standard single-parameter
settings, where an envelope condition and monotonicity are
used to characterize IC (see Myerson 1981). The envelope
condition above is a standard one, but interval dominance
replaces monotonicity in a dynamic setting. It compares
the utility obtained by the truthful strategy (left-hand side)
with other strategies of the form x

0 ! s

i10 (right-hand side),
because these are the only plausible candidate strategies
when the mechanism is ex post IC for periods t æ 1.

4. The Virtual-Pivot Mechanism
We now present the virtual-pivot mechanism, which is an
optimal dynamic mechanism in separable environments.

The key insight from §3.2 is that the profit of a dynamic
mechanism is bounded by an affine transformation of the
social welfare of the agents, where the affine parameters
are given by the functions Å

i

and Ç

i1 t

in Lemma 3.4.
We define an affine weight function through a pair of

vectors 4Å̂1 Ç̂5, such that Å̂ = 4Å̂11 0 0 0 1 Å̂n

5 2 ✓n and Ç̂ =
4Ç̂11 0 0 0 1 Ç̂n

5 2 4A ⇥ ✓5n, where A includes all possible
action vectors a

t for any t. In particular, Ç̂ is allowed to
depend action a

t , so that Ç̂4at

5= 4Ç̂14a
t

51 0 0 0 1 Ç̂

n

4a

t

552✓n.

For any 4Å̂1 Ç̂5, time t, and vectors of actions at and types
s

t , the weighted social welfare with respect to 4Å̂1 Ç̂5 is
defined as
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where the max is over all the possible allocation rules.
Using a standard dynamic programming argument, the
weighted social welfare satisfies the following (Bellman)
equations:
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where s

t+1
i

is the next (random) type when conditioned on
s

t and a

t .
Note, however, that the affine parameters 4Å̂1 Ç̂5 we need

to use to achieve the bound from Corollary 3.1 are not
numbers (or, in the case of Ç, functions of the sequence of
actions), but functions of the first signal s

i10 of each agent i.
An important challenge in implementing an IC mechanism
is eliciting s

i10 in an incentive-compatible way in order to
obtain the desired 4Å̂1 Ç̂5. An important design choice in
the virtual-pivot mechanism is to use the first report of
s

i10 to determine the affine parameters 4Å̂1 Ç̂5 and maintain
those affine parameters fixed for all periods, irrespective
of future re-reports of s

i10. We note that, at any period,
only the initial reports and the current period reports are
used by the virtual-pivot mechanism, so past reports that
are inconsistent with current reports are effectively ignored
by the mechanism (except for the initial reports, which
permanently impact the affine parameters).
The virtual-pivot mechanism is presented in Figure 2.

The mechanism consists of two stages:
• (Subscription Phase) At time 0, each agent i, reports

her initial type, ŝ
i10. Then, the mechanism assigns affine

parameters 4Å̂

i

= Å

i

4ŝ

i1051 Ç̂i

4 · 5 = Ç

i1 t

4·1 ŝ
i1055 to each

agent i, where the functions Å

i

and Ç

i

are given in
Lemma 3.4. Then, the mechanism excludes the agents
whose expected discounted payments would be negative (or
zero). If p?

i

4ŝ05∂ 0 (see definition in Equation (24)), then
i y a0. Otherwise, agent i 2 a0 and pays p

i104ŝ05 (see defi-
nition in Equation (25)).
• (Allocation Phase) For t æ 1, the virtual-pivot mech-

anism is equivalent to an affine dynamic pivot mechanism.
The affine parameters are fixed and the mechanism solic-
its reports from the agents in order to choose actions that
maximize the affinely transformed social welfare W

4Å̂1 Ç̂5.
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To gain some intuition, let us consider the multiplicative-
separable case. Roughly speaking, an agent with a higher
initial signal s

i10 would be assigned a larger Å̂
i

. A larger
Å̂

i

increases the weight of the agent in the affine
transformation, and hence increases the value obtained by
the agent.

We discuss the allocation and payment rules in more
details in §4.2. Before that, we present our main results.

4.1. Optimality

We make the following assumptions.

Assumption 4.1 (Monotone Hazard Rate). Assume
that f

i

4s

i105/41É F

i

4s

i1055 is strictly increasing.

Assumption 4.2. Assume that
• (Multiplicative Case). If the value function of agent i

is multiplicatively separable, then A

i

4s

i105 is strictly
increasing, twice differentiable, and concave in s

i10.
• (Additive Case). If the value function of agent i is

additively separable, then A

i

4s

i105 is strictly increasing,
twice differentiable, and concave in s

i10. Also, Ci1 t

4a

t

5 is
positive for all at 2A,

The function A

i

4s

i105 = s

i10 is an example of a func-
tion that satisfies Assumption 4.2. These assumptions imply
that Å

i

is strictly increasing for multiplicatively separable
value functions and that Ç

i1 t

is differentiable and strictly
increasing for additively separable value functions (see
Lemma A.2).

Theorem 4.1 (Optimality). Suppose that the environ-
ment is separable and that Assumptions 4.1 and 4.2 hold.
Then, the virtual-pivot mechanism is optimal in both the
relaxed and the dynamic environments. In addition, the
virtual-pivot mechanism is periodic ex post individually
rational and periodic ex post incentive compatible.

The proof of this theorem is presented in §4.3.

Figure 2. The virtual-pivot mechanism.

(Subscription Phase). At time t = 0, for each agent i,
She reports ŝ

i10.
Let Å̂

i

Ñ Å

i

4ŝ

i105, Ç̂i

4a

í

5Ñ Ç

i1 í

4a

í

1 ŝ

i105 for all í æ 1 and
a

í 2A
í

.
If p?

i

4ŝ05∂ 0 4see Equation (24)5, then i y a0 (agent i
is excluded).

If p?

i

4ŝ05> 0, then let i 2 a0 and charge her p
i104ŝ05,

see Equation (25).

(Allocation Phase). At each time t = 1121 0 0 0 0
Each agent i reports ŝt

i

.
Let a?

t

be an action that maximizes W 4Å̂1 Ç̂5

4a

?

t

1 ŝ

t

5,
see Equation (19).

Let m
i1 t

be the flow marginal contribution of agent i,
see Equation (21).

The payment of each agent i is equal to
p

i1 t

4ŝ

t

5Ñ v

i1 t

4a

?

t

1 ŝ

t

i

5Ém

i1 t

/Å̂

i

.

The assumptions above allow us to satisfy the dynamic
IC condition from Lemma 3.6. For optimality of the mech-
anism in the relaxed environment, a weaker set of assump-
tions could potentially be sufficient.
The virtual-pivot mechanism is optimal for both the

relaxed and dynamic environments, and the profit obtained
by the mechanism, as well as the utility obtained by the
agents, are identical in both environments. Therefore, the
agents obtain no “information rent” for periods t æ 1.
That is, the agents are not able to obtain any benefit
from the fact that signals s

i111 0 0 0 1 si1 t are private. This no-
information-rent property was noted in a two-period model
by Ëso and Szentes (2007), where the mechanism is able to
control whether or not agents obtain a second private signal.
Theorem 4.1 implies that the no-information-rent property
holds even in infinite-horizon problems where the sellers
have partial control (or even no control) over what private
signals agents obtain over time (signals evolve according
to a stochastic kernel K

i1 t

4s

i1 t

óatÉ1
1 s

tÉ1
i

55, as long as the
environment is separable. We show in §6 that this property
does not extend to general nonseparable settings.
Because there is no information rent for periods t æ 1,

there is no allocation distortion associated with signals
s

i1 t

for t æ 1. The initial signal s

i10, however, causes
distortion from the efficient allocation at every period as
if the mechanism design problem was a static one. To
see this easily, consider a setting where each agent i has
a multiplicatively separable valuation and A

i

4s

i105 = s

i10,
i.e., the value function of agent i is v

i1 t

= s

i10 ⇥
B

i1 t

4a

t

1 s

i111 0 0 0 1 si1 t5. The virtual-pivot mechanism
allocates to maximize the “virtual valuations” of
✓
s

i10 É
1É F

i

4s

i105

f

i

4s

i105

◆
B

i1 t

4a

t

1 s

i111 0 0 0 1 si1 t50

That is, the first signal s
i10 is replaced at every period by

the virtual value s
i10É 41ÉF

i

4s

i1055/fi4si105 of static mech-
anism design (see Myerson 1981). Our results contrast to
the ones of Battaglini (2005) and Zhang (2012), where the
allocation distortion is transient (it disappears as t grows).
This is due to the fact that in our model the impact of the
signal s

i10 is permanent (in the multiplicatively separable
case, the signal s

i10 multiplies B

i1 t

4 · 5 for all t), whereas
the impact of s

i10 is transient in these other papers.
Applications to Online Advertising. In the generalized-

second price (GSP) auctions (cf. Edelman et al. 2007)
that are the prevalent mechanisms currently in use for
sponsored search auctions, advertisers are ranked by their
bids, multiplied by a quality score. The quality score is typ-
ically an estimate of the click-through rate of the advertiser.
The price determined in the auction is also divided by this
quality score. Hence, a larger click-through rate increases
an advertiser’s probability of the allocation and reduces its
payments. Our results suggest the following form of con-
tracts for sponsored search: the search engine would offer
a menu of contracts to advertisers. Each contract would
consist of an up-front payment and a multiplicative weight.
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The weight purchased by the advertiser would work in a
manner similar to the quality score (and, typically, in con-
junction to it). An advertiser who purchased a given weight
would see its bids multiplied by this weight during the auc-
tion and would see its payments divided by this weight.
Advertisers with higher conversion rates would have an
incentive to buy higher (and more expensive) multiplicative
weights. Overall, advertisers who value an impression more
(an impression means that an ad is shown to a customer)
would pay more up-front, but pay less per auction and see
its ad displayed more often.

4.2. The Allocation and Payment Rules

We first discuss the allocation rule of the mechanism.
At each time t, the mechanism chooses allocation a

?

t

,
which maximizes W

4Å̂1Ç̂5

4a

?

tÉ1
1 ŝ

t

5, whereas a

?

tÉ1 =
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01 0 0 0 1a
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tÉ15 represents the past actions of the mechanism.
From Equation (18), we have
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Note that only reports from two time periods (0 and t)
are used to determine a

?

t

. That is, ŝ0 is used to determine
the affine parameters and ŝ

t

is used to determine the agents’
types at period t. At time t, the mechanism does not use
the agents’ reports between times 1 to time t É 1 (for the
allocation or payments).

We now show how the payments are determined. We
start from the payments p

i1 t

for t æ 1 and then use
those to construct p

i10. To make the mechanism incentive
compatible, p

i1 t

is determined such that the (instantaneous)
utility of agent i at time t is proportional to her flow
marginal contribution to the affinely transformed social
welfare, denoted by m

i1 t

.

m

i1 t

=W

4Å̂1 Ç̂5

4a

?

tÉ1
1 ŝ
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where W

4a1b5

Éi

is the affinely transformed social welfare
obtained in the absence of agent i
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and a
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is the action that maximizes W
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time t.
Equivalently, we have
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The payment by agent i at time t is then given by
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In Bergemann and Välimäki (2010), the idea of such
a payment based on flow marginal contributions was
introduced and shown to establish incentive compati-
bility for the welfare-maximizing allocation rule (see
also Roberts 1979). Similarly, the payments that we use
(which are scaled versions of the flow marginal contri-
butions) establish incentive compatibility for the affinely
transformed welfare-maximizing allocation rule.
We now construct the payment at time 0. Consider the

allocation rule q

? that maximizes the weighted social wel-
fare conditioned on the reports at time 0, i.e.,
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where q

t

= q4h

t

1 s

t

5 and q

t = 4q01 0 0 0 1qt5. We drop the
(explicit) dependence of q

t

on h

t

and s

t to simplify the
presentation. Note that if the agents are truthful, then q? and
a

? correspond to the same allocation rule. Define p
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4ŝ05 as
follows:
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ŝ

i10

0

°V

z!z

i

4s

i101 ŝÉi105
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The value p

?

i

4ŝ05 is the payment of agent i in the
relaxed environment, given by the envelope condition. If
p

?

i

4ŝ05∂ 0, then the mechanism excludes agent i (that is,
i y a

?

0).
The total expected discounted sum of payments in the

relaxed and dynamic environments must match in order
to achieve our optimality bound. Therefore, p?

i

4ŝ05 must
be equal to expected discounted sum of payments from
agent i. Hence, the payment of agent i at time 0 equals
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4.3. Unrelaxing: Proof of Theorem 4.1

In this subsection, we present the three steps of the proof
of Theorem 4.1. The proofs of the following lemmas are
given in the appendix.

The first step is to show that the mechanism, if incentive
compatible, does indeed yield the profit from the upper
bound in Corollary 3.1. The argument used to prove this
lemma is a standard one from Myerson (1981). We also
show that the virtual-pivot mechanism is periodic ex post
individually rational.

Lemma 4.1. If the virtual-pivot mechanism is incentive
compatible, then it is optimal. Moreover, it is periodic
ex post individually rational at t = 0.

The lemma below guarantees that under the virtual-pivot
mechanism, it is always a best response for agents to report
their types truthfully regardless of the history, at any time
t æ 1 (assuming that other agents will be truthful in the
future but not necessarily in the past). This lemma follows
the technique of Bergemann and Välimäki (2010), except
that it maximizes an affine transformation of the social wel-
fare, instead of the social welfare itself.

Lemma 4.2. The virtual-pivot mechanism is periodic
ex post incentive compatible and periodicic ex post indi-
vidually rational for all periods t æ 1.

The lemma above not only rules out deviations at periods
t æ 1, but it also rules out combined deviations at period
t = 0 and future periods. That’s because if an agent deviates
at period 0, she still wants to truthfully report her type at a
future period (the mechanism is periodic ex post IC).

Therefore, we need only concern ourselves with period
t = 0 deviations from the truthful strategy. The proof of
Theorem 4.1 is completed by the following lemma.

Lemma 4.3. Suppose the assumption of Theorem 4.1 hold.
Then the virtual-pivot mechanism satisfies the conditions
provided by Lemma 3.6 (i.e., Equations (15) and (16)).
These conditions are satisfied for all agents conditioned on
any initial type sÉi10 of the other agents and, therefore, the
mechanism is periodic ex post incentive compatible.

This is a key technical result in our paper. Proving this
lemma involves addressing the key difference between the
dynamic and the static setting, as we explicitly show the
conditions of Lemma 3.6 hold. The separability assumption
is central here.

4.4. On Our Methodology

Although other papers in the literature (see Ëso and Szentes
2007, Pavan et al. 2011) also provide optimal mechanisms
using the relaxation approach, we emphasize that our con-
struction and results do not immediately follow from them.
The key challenge we address in our paper is showing
that the allocation rule generated by the relaxation has an
associated payment rule that makes the mechanism IC and

IR in the dynamic setting. Our solution requires a combina-
tion of using the re-reporting technique, with constructing
payments based on Bergemann and Välimäki (2010) to
obtain periodic ex post IC for periods t æ 1, as well as
proving IC (at t = 0) by using our characterization of IC
under the assumption of periodic ex post IC for t æ 1.
Furthermore, we show in §6 that the relaxation approach

does not work in every setting. In fact, the second exam-
ple provides a simple dynamic environment in which the
usual notions of monotonicity hold for the optimal alloca-
tion in the relaxed environment, and yet, this same alloca-
tion rule is not optimal in the dynamic environment (clearly
showing how static notions of monotonicity are insuffi-
cient). Although we are not able to address the challenging
problem of explicitly characterizing the necessary and suf-
ficient properties of an environment for which this relax-
ation approach will succeed, we do provide environments
in which both the relaxation approach fails and various
assumptions of our separable environment are violated.
Roughly speaking, these show that at least some variant of
our assumptions are required for the relaxation approach to
be successful.
Closely related to our work is the paper by Pavan et al.

(2011), which concurrently and independently also develop
a methodology for optimizing dynamic mechanisms. They
construct an envelope theorem for dynamic environments
and use it to provide necessary conditions for an optimal
mechanism. Though quite general, their framework does
not encompass ours (for example, they assume that all
signals are real valued, whereas our work allows for signals
in arbitrary sets for periods t æ 1). The more delicate issue
in designing optimal dynamic mechanisms is obtaining suf-
ficient conditions for optimality, which requires creating a
payment rule and proving it makes the mechanism incen-
tive compatible. The mechanism we propose and the one
proposed by Pavan et al. (2011) constitute two different
mechanisms that are incentive compatible in different sets
of environments. In particular, these two sets of environ-
ments do not encompass each other.
Our work focuses on a separability condition that allows

for the design of optimal mechanisms. By separability, we
mean that the first signal is independent from future sig-
nals and is related to the value function via a multiplicative
or additive structure. Pavan et al. (2011) consider a notion
of separability that is different from ours and that imposes
several restrictions that do not apply to our work. Their
definition of separability excludes our multiplicatively sep-
arable utility functions, which form the basis of our appli-
cations to online advertising and supply chain contracting.
Their separable environments also require that the mecha-
nisms’ actions not affect the evolution of the agents’ private
information (see Assumption F-AUT). Having the mech-
anism’s actions affect the evolution of types is important
for our applications: in our sponsored search example, the
advertiser should only learn about its conversion rate when
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its ad is displayed; similarly, in our supply chain contract-
ing example, demand learning should not occur when the
firm’s inventory is too low. The implementation they pro-
pose is quite different from ours and relies on types being
Markovian and real valued and the agents being able to
correct past underreported signals by overreporting future
ones. To ensure that agents can indeed correct a past mis-
report, they make stochastic dominance assumptions on
the agents’ types that we do not make (see Assumption
F-FOSD). By establishing optimal mechanisms under two
different sets of assumptions, our paper and Pavan et al.
(2011) complement each other in the overall mission of
finding settings where we can design optimal dynamic
mechanisms.

5. Special Cases of the Virtual-Pivot
Mechanism

In this section, we show that the virtual-pivot mechanism
can be simply implemented in some natural special cases
where it enjoys additional guarantees. First, we present an
indirect implementation of the mechanism in an environ-
ment with a single agent. Then, we look at environments
where the evolution of the types of the agents is either
fully dependent or fully independent of the actions of the
mechanism.

5.1. The Optimal-Contracting Mechanism for a
Single Agent

We now consider the case where there is only a single
agent. In this case, the optimal mechanism can be imple-
mented as a remarkably simple indirect mechanism.

In particular, the indirect optimal-contracting mechanism
is presented in Figure 3. The mechanism works as fol-
lows. The subscription phase is the only period at which
the agent ever makes a report of her type. In particular,
the agent just makes a report ŝ0 of s0.4 In the posted-
price-phase, the mechanism simply posts a price for every

Figure 3. The optimal-contracting mechanism for a
single agent.

(Subscription Phase). At time t = 0,
The agent reports ŝ0.
If p?

4ŝ05∂ 0, then terminate the process
4see Equation (24)5.

Otherwise, charge the agent p04ŝ05 and continue
4see Equation (25)5.

(The Posted Price Phase). At each time t = 1121 0 0 0 0
The mechanism informs the agent of the price of each

possible action, which is given by
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Å4ŝ05
0

The agent chooses an action a
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1 ŝ05, and the
mechanism takes this action.

possible action; the agent decides upon the action; the agent
pays the respective price for this action; the mechanism
executes this chosen action. These prices may vary as a
function of time because they depend on her previous pur-
chases. After t æ 1, the mechanism does not solicit reports
from the agent.

Corollary 5.1. Suppose the assumptions of Theorem 4.1
hold and that there is only one agent. Then Optimal-
Contracting is an optimal mechanism.

In indirect mechanisms, we need to concern ourselves
with what equilibrium we are implementing because agents
are no longer simply reporting their types. The corollary
above refers to the equilibrium where ties are broken as in
the virtual-pivot mechanism.
To observe how simple the optimal-contracting mecha-

nism is, consider a scenario where the mechanism is con-
sidering selling a stream of items to an agent. At each time
period, the seller has two possible actions: allocate an item
to the agent at a production cost É æ 0 or not (at no cost).
The agents’ valuation is multiplicative separable (hence,
Ç

t

4a

t

1 ŝ05= 0).
The optimal-contracting mechanism can be implemented

as follows: the seller offers a family of contracts to the
agent of the form 4p1M4p55. The agent either leaves (and
the process terminates) or she picks a price p. If the agent
picks a price p she is immediately charged M4p5. At every
period t æ 1, the agent will offer to buy the item at the
constant price p.
The value M4p5 the mechanism selects is

M4p5= p0

✓
Å

É1

✓
É

p

◆◆

for each possible positive value of p04s05. In equilibrium,
the agent will either leave (if p?

4s05∂ 0) or will pick price
p= É/Å4s05.
This mechanism is optimal regardless of the value func-

tion of the agent, as long as it is multiplicatively separable.
Even if the agent’s value v

t

is increasing or decreasing over
time and the seller knows about it, it is still optimal for the
seller to offer a family of contracts of the form 4p1M4p55,
which includes a constant price for every item 4t æ 15.

5.2. Controlled and Uncontrolled Environments

There are two natural extremes for how the stochastic
process of the environment evolves. At one extreme is
the fully uncontrolled environment, where the evolution of
the agents’ signals has no dependence on the action taken
by the mechanism. Here, we show that the virtual-pivot
mechanism enjoys a much stronger incentive-compatibility
notion. At the other extreme is a multiarmed bandit process
(which can be considered a fully controlled environment).
Here, the type of an agent only evolves if the agent was
allocated the item (and no evolution occurs otherwise) and
the optimal allocation rule has a particularly simple form.
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5.2.1. Fully Uncontrolled Environments. Define an
uncontrolled environment to be one in which the stochastic
process of each agent is independent of the actions taken
by the mechanism, i.e., K

i1 t

4s

i1 t

óat

1 s

tÉ1
i

5=K

i1 t

4s

i1 t

ó stÉ1
i

5.
In this environment the allocation rule of the virtual-pivot

mechanism is myopic, in that the mechanism’s decision is
to maximize the instantaneous weighted social welfare (as
opposed to considering how this impacts future decisions).
In particular, we have that:

argmax
8a

t

2A
t
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nX
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5+ ÑW

4Å̂1 Ç̂5
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1 ŝ
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5

���� ŝ
t
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tÉ1

�
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This is a straightforward corollary of the uncontrolled
assumption.

Corollary 5.2 (A Dominant Strategy IC). Suppose
the assumptions of Theorem 4.1 hold. The virtual-pivot
mechanism has the property that for every time step t æ 1,
(e.g., after time step t = 0), the truthful reporting strategy
is a dominant strategy.

This guarantee is immediate because each allocation
from t æ 1 is just instantly maximizing a social welfare
function (and the action taken by the mechanism and the
reports provided by the agents have no effect on the future
evolution of signals). Hence, periodic ex post IC for peri-
ods t æ 1 immediately implies ex post IC (and, hence, dom-
inant strategies implementation) for periods t æ 1. Hence,
if agents knew their own (and other agents’) past, present,
and future signals, they would still report truthfully at all
histories after t = 0. Note, however, that at period t = 0,
the mechanism is still periodic ex post IC (not ex post IC).

5.2.2. Fully Controlled (Multiarmed Bandit) Envi-
ronments. We now consider the setting where there is
only one item to sell every round—so the action space for
the mechanism at each period t æ 1 consists of choosing
which agent should receive the item (or choosing not to
allocate the item). The environment now considered is one
where the type of an agent evolves only if the mechanism
takes an action. Namely, the type of an agent only changes
when the mechanism allocates the item to the agent. We
call this environment controlled; the underlying stochastic
process corresponds to multiarmed bandits where each arm
is mapped to an agent.

In a multiarmed bandit process, there is a “state” of each
arm and this only evolves if the arm was “pulled.” In our
setting, fully controlled environment is one where if on any
round t É 1 where agent i is not allocated the item, the
signal s

i1 t

is irrelevant. Precisely, we have that if i is not
allocated at time tÉ1, then we have that: (1) all current and

future values do not depend on s

i1 t

and (2) the distribution
of all future signals are independent of s

i1 t

. We also assume,
for simplicity, that there are no costs associated with actions
in the fully controlled setting.
A notable feature of this environment is that the optimal

allocation is an index-based policy (a Gittins-type index,
see Gittins 1989, Whittle 1982). Namely, we can assign
a number to each agent, independent of the other agents,
and the optimal allocation rule is to give the item to the
agent with the highest positive index. In the fully controlled
environment, the optimal allocation can be implemented
using virtual indices.

Definition 5.1 (Virtual Index). For each agent i, the
virtual index is defined as:

G4Å̂1 Ç̂5

i

4s

i1 t

5

=max
í

i

⇧
P

í

i

t=t

0 Ñt

4Å̂

i

v

i1 t

04at

0
1 s

t

0
i

5+ Ç̂

i

4a

t

0
55

P
í

i

t=t

0 Ñt

���� si1 t
�
1 (26)

where the maximum is taken over all stopping times í
i

.

The optimal allocation rule is to give the item to the
agent with the highest positive virtual index. The virtual
index can be computed individually for each agent and,
therefore, it decouples the n-agent problem into n single-
agent problems.
The payments, however, cannot be computed separately

for each agent because they depend on the externalities
created by the agent receiving an item. The agents who do
not receive an item at time t do not cause externalities and,
therefore, do not make payments at time t (other than time
t = 0). For the agent i that does get the item at time t,
W

4Å̂1 Ç̂5

Éi

4a

?t

1 ŝ

t

5= ⇧6W 4Å̂1 Ç̂5

Éi

4ŝ

t+1
5 óa?t

7. Hence, we obtain the
following corollary.

Corollary 5.3 (The Virtual Index Mechanism). Con-
sider the fully controlled environment defined above and
suppose the assumptions of Theorem 4.1 hold. The alloca-
tion rule of the virtual-pivot mechanism is to simply allo-
cate to the agent with the highest virtual index. Moreover,
for t æ 1,

p

i1 t

4ŝ

t

5= 1
Å̂

i

441É Ñ5W

4Å̂1 Ç̂5

Éi

4a

?t

1 ŝ

t

5É Ç̂

i

4a

?t

550

To gain some intuition, consider the multiplicative-
separable case. An agent with a higher initial type s

i10

would be assigned a larger Å̂
i

. A larger Å̂
i

increases agent
i’s virtual index and, therefore, increases the expected
discounted value that agent i obtains. Moreover, she pays
a lower payment at each period t æ 1. However, for these
privileges, she will be required to make a higher up-front
payment (at t = 0).
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6. Limitations of the Relaxation
Approach

In this section, we provide examples where the optimal
mechanisms in the dynamic and relaxed environments
obtain different revenues. Our first example shows that if
s1 is correlated with the future signals, then the relax-
ation approach may fail. Our second example provides
a simple, yet nonseparable, value function in which the
relaxation approach fails. For more on how the relaxation
approaches fails in general settings (that is, nonsepara-
ble environments), see the recent work by Battaglini and
Lamba (2012).

The examples are two-period environments with one
agent (e.g., future values can be considered to be 0, and
we can set Ñ = 1 without loss of generality). The agent
receives signals s0 and s1 at times 0 and 1. At the end of
the period t = 1, the mechanism takes an action a 2 80119,
corresponding to an allocation of an item. The agent obtains
a value of a⇥ v4s01 s15—no value is obtained at t = 0.

Correlated Signals. Suppose the value of the agent is
equal to her second signal, namely, v4s01 s15= s1. Assume
s0 2 60117 and s1 2 60117 are correlated. In the relaxed
environment, the optimal mechanism is trivial: observe s1,
and take action a= 1, at the price equal to s1. Hence, the
optimal mechanism extracts the whole surplus, which is
equal to ⇧6s17.

We now show that, under weak assumptions, the revenue
of any dynamic mechanism that cannot observe the second
signal is less than ⇧6s17. Consider an incentive-compatible
and individually rational mechanism M. Note that due
to individual rationality constraints, a mechanism cannot
extract more revenue than ⇧6s1 ⇥ a

M
4s01 s15 ó s07∂ ⇧6s1 ó s07

from an agent of type s0 where a

M
4s01 s15 represents the

mechanism’s action (i.e., the probability of allocation).
Thus, M can extract a revenue of ⇧6s17 only if a= 1 with
probability 1.

On the other hand, if a mechanism chooses a= 1 with
probability 1, then the expected payment at time t = 0,
⇧6p0 + p1 ó s07, should be identical for all possible first-
period types s0 with probability 1, by Lemma 3.2 (if not,
then the agent would misreport her type as the type with the
minimum expected payment). Hence, the expected payment
of the agent is less than or equal to inf

s0
⇧6s1 ó s07. Suppose

s0 and s1 are correlated such that for a set ä of nonzero
measure, if s0 2 ä, then ⇧6s1 ó s07 < ⇧6s17. In this case, the
revenue of M is strictly less than ⇧6s17.

Nonseparable Value Functions. Now assume s0 to be
uniformly drawn from 60117 and let s1 be drawn indepen-
dently and uniformly from the set 8+1⇥9. The value at
time 1 is

v4s01+5= s0 + c+3

v4s01⇥5= s0c⇥0

For all future times, assume the value is 0. Here, we assume
c+ is a constant greater than 1, and we later set c⇥ to be a
large positive constant.
Note that this value function is of the form

v4s01 s15=A4s15s0 +B4s15

and does not satisfy our separability assumptions.
We observe that by Equation (6), there is a unique

optimal allocation in the relaxed environment. This optimal
allocation corresponds to the two static optimal auctions
for the special cases where s1 =+ and s1 =⇥. In par-
ticular, the allocation for q4s01 s1 =+5 is one that always
allocates (because c+ is greater than 1). The allocation
for q4s01 s1 =⇥5 occurs only if s0 æ 005. This allocation
uniquely maximizes Equation (6) under the assumption that
U 405= 0.5 To see this, note that for each setting of s1, we
have a static problem of optimal auction design with one
item and one buyer. Furthermore, because the values are 0
at s1 = 0, we have U 405= 0.
It is interesting to note the following rather natural mono-

tonicity properties:
• The value v4s01 s15 is monotone (and linear) in s0.
• The optimal (relaxed) utility is U 4s05 is monotone

in s0.
• The future value V 4s05 under the optimal allocation is

monotone in s0.
Nonetheless, we show that dynamic IC is more stringent
and that the optimal revenue in the dynamic environment
is less. Let r

? be this optimal revenue in the relaxed
environment. Now observe that if r

? is achievable in the
dynamic environment, then it must be due to this allocation
rule—Equation (6) also specifies the expected payments in
the dynamic environment. As a proof by contradiction, let
us suppose that this allocation rule could be implemented
in an IC manner in the dynamic environment.
Since the allocation does not change between 0 and 005,

Lemma 3.2 implies:

U 4s0 = 0055ÉU 4s0 = 05= 1
2v40051+5É 1

2v401+50

Hence, the average revenue at s0 = 0 is:

E

⇥
p0 +p1 ó s0 = 0

⇤= V 4s0 = 05ÉU 4s0 = 05

= 1
2v401+5ÉU 4s0 = 05

= 1
2v40051+5ÉU 4s0 = 00550

Now consider the misreporting strategy R of using ŝ0 = 0
when s0 = 005 and then reporting ŝ1 =⇥ when s1 =+ and
reporting ŝ1 = + when s1 =⇥. Here, the agent obtains
the item when 4s01 s15= 40051⇥5 (since 4ŝ01 ŝ15= 401+5

is reported, which leads to an allocation). The value under
this strategy is

V

R

4s0 = 0055= 1
2v40051⇥5
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(since with a 1/2 probability the agent obtains s1 =⇥).
Also, note that the distribution of misreports ŝ1 is uniform
under R, so that the expected payments under R at s0 = 005
are identical to those at s0 = 0. Hence,

U

R

4s0 = 0055= V

R

4s0 = 0055ÉE

⇥
p0 +p1 ó s0 = 0

⇤

= 1
2v40051⇥5É 1

2v40051+5+U 4s0 = 0055

= 1
2 4005c⇥ É 005É c+5+U 4s0 = 00550

Thus, for sufficiently large c⇥, we have that this misreport-
ing strategy obtains strictly greater utility than that of the
truthful strategy. Furthermore, by a continuity argument,
for a neighborhood 60051005+ Ö7 this misreporting strategy
will also provide strictly more revenue (since the allocation
rule does not change above s1 æ 005). Thus, we have a
contradiction—there is a misreporting strategy resulting in
strictly greater (unconditional) expected utility.

7. Concluding Remarks
In this work, we propose an optimal dynamic mechanism,
the virtual-pivot mechanism, for separable environments.
Separability is a condition that is often satisfied when the
agents have multiple different kinds of private information,
some of which they know in advance and other that they
learn over time. Separability arises in several different set-
tings, from the world of online advertising to the problem
of supply chain contracting.

Our methodology is as follows: we first find a candidate
allocation rule by solving the mechanism design problem in
a relaxed environment, as is standard in this literature. The
key challenge we address is how to find a (dynamic) pay-
ment rule that makes this candidate allocation rule incentive
compatible. Our solution methodology involves aiming for
a bigger goal: finding a payment rule that makes the candi-
date allocation rule periodic ex post incentive compatible.
We show that this is possible for periods after the initial
one if we allow the agent to “re-report” their entire his-
tory of signals at each period. In particular, the payment
rule we need is constructed by mapping the candidate allo-
cation rule to an affine transformation of the social wel-
fare function. We find necessary and sufficient conditions
for incentive compatibility at the initial periods for mech-
anisms that satisfy periodic ex post incentive compatibility
for periods after the first one. Finally, we show that the
virtual-pivot mechanism satisfies these conditions and is,
therefore, incentive compatible.

The virtual-pivot mechanism is quite simple and could
be implemented in settings such as selling online advertise-
ment (see §§2.2 and 4.1). The variant of this mechanism
specialized to one-buyer settings, the optimal-contracting
mechanism, is even simpler and shows that the structure of
the optimal mechanism can be quite counterintuitive.

We show in §6 that this relaxation approach will not
work in designing optimal mechanisms for general nonsep-
arable settings. The precise extent to which our technique

works in nonseparable settings and what methodology
could be used in designing optimal mechanisms when
the relaxation method fails are promising areas for future
research.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1194.

Endnotes

1. We do assume that Assumption 2.3 holds throughout the paper,
but we state the definition above as a combination of Prop-
erty 2.1 and Assumption 2.3 to clearly state that for an environ-
ment to be separable, the value function of each agent must satisfy
both a functional and a statistical (independence of first signal)
separation.
2. The Revelation Principle implies that an equilibrium outcome
in any indirect mechanism can also be induced as an equilibrium
outcome of an (incentive-compatible) direct mechanism.
3. See §4 for how the mechanism utilizes the (potentially inco-
herent) sequence of reports provided by the agents.
4. Observe that the subscription phase can be implemented in
an indirect manner by offering a menu of contracts at time 0.
However, for the simplicity of presentation, we assume the agent
reports her initial type.
5. Again, technically, there is a family of maximizers that
agrees with probability 1. The argument holds for any of these
maximizers.
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Appendix

Appendix A: Proofs for Section 3

Lemma A.1 For any reporting strategy y ! z and initial type x, the partial derivative of the
expected value of agent i V y!z

i

(x) (see definition in Eq. (10)) with respect to x exists and is:
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(where the expectation is under y! z and T�i

). Furthermore, it is bounded by
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Proof: From Assumption 2.2, we have that for all i, t, a, x and s
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Therefore, by Lebesgue’s Dominated Convergence Theorem, the partial derivative @V̄
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Proof of Lemma 3.1 Any strategy available to the agents in the relaxed environment is a feasi-
ble strategy in the dynamic environment. Therefore, if all other agents are truthful, any profitable
deviation from the truthful strategy in the relaxed environment implies a profitable deviation in
the dynamic environment. Since no such profitable deviations exist in the dynamic environment,
we obtain that the mechanism M is incentive compatible in the relaxed environment. Therefore,
the optimal revenue in the relaxed environment provides an upper bound on the revenue in the
dynamic environment.

Proof of Lemma 3.2 For consistency with the notation used in the rest of the paper, we rep-
resent the utility of agent i with initial type s

i,0 = z

0 and reporting his initial type as ŝ

i,0 = z by
U

z!z

i

(z0), assuming all other agents are truthful. Respectively, V z!z

i

(z0) and P

z!z

i

(z0) represent
the expected discounted value and payment of agent i under initial type z

0 and reported initial
type z

0.
The expected utility of agent i under reporting strategy z! z and initial type x is

U

z!z

i

(z) = V

z!z

i

(z)�P

z!z

i

(z). (27)
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Under the same reporting strategy z! z, but under initial type z

0, the utility of agent i is

U

z!z

i

(z0) = V

z!z

i

(z0)�P

z!z

i

(z0). (28)

The payments are functions only of reported types, not true types, and therefore, P

z!z

i

(z) =
P

z!z

i

(z0). Therefore, for any z 6= z

0, combining Eqs. (27) and (28) yields
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At the same time, if z > z

0, incentive compatibility yields U z
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(z0), hence
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Since the partial derivative @V

z!z(x)

@x

exists for all x (see Lemma A.1), we can take the limit as
z

0 " z and obtain that the left-hand side derivative of U z!z

i

(z) satisfies

d�U
z!z

i

(z)

dz
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z!z

i

(s)
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.

Using the same argument for z

0
> z, we obtain that the right-hand side derivative of U
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i
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.

Since |@V
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i

(s)

@s

| is bounded by V̄

1��

by Lemma A.1, we get that the absolute value of both the left-

hand and right-hand side derivatives of U z!z

i

(z) are also bounded by V̄

1��

. The function U

z!z
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(z)

is, therefore, V̄
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-Lipschitz-continuous and, thus, di↵erentiable almost everywhere. At all points

where the derivative exists, dU
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(s)
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���
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. Therefore, the envelope condition follows:
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Plugging in the result from Lemma A.1, we obtain the desired result.

Proof of Lemma 3.3 For notational convenience, we write:
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, s
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@s

i,0
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=
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where the s

t

i

implicitly depends on the first signal.
Consider first the utility U

M
i

(s) of an agent i under an initial type profile s, which is given by

U

M
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M
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from Lemma 3.2. Taking the expectation of this term over all possible first period signals
s1,0, ..., sn,0, we obtain
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i

(s
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M
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0
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E
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t
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Inverting the order of integration,
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M
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By multiplying and dividing the right-hand side of the equation above by the density f

i

(z) we
obtain an unconditional expectation,
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i

(s
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M
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#
.

Now note that the discounted sum of payments E[
P1

t=1 �
t

p

i,t

] is equal to the expected discounted
valuation of agent i – E[

P1
t=1 �

t

v

i,t

(at

, s

t

i

)] – minus her utility, which yields the claim.

Proof of Lemma 3.4 Observe that for multiplicatively-separable value functions
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, s

t

i

)

@s

i,0
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0
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and, therefore, Eqs. (7) and (6) are identical. Similarly, for additively-separable functions,
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i
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0
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)

and, therefore, Eqs. (7) and (6) are again identical.

Proof of Corollary 3.1 For an IC mechanism M, the expected discounted sum of payments by
agent i is equal to

E
"

1X

t=0

�

t

p

i,t

#
=E

"
1X

t=0

�

t

�
↵

i

(s
i,0)vi,t(a

t

, s

t

i

)+�

i,t

(at

, s

i,0)
�
#
�E

⇥
U

M,T
i

(s
i,0 = 0)

⇤

by taking expectations over s�i,0 (see Eq. (7)). Since the mechanism satisfies IR,
E
⇥
U

M,T
i

(s
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⇤
� 0 and, therefore,
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The profit of M is given by the sum of payments minus the cost of actions (see Eq. (4)),

ProfitM E
"

1X

t=1

�

t

 
nX

i=1

⇣
↵

i

(s
i,0)vi,t(a
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)+�
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, s
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⌘
�c
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!#
.

The bound above is valid for all IC and IR mechanisms. By maximizing over the set of all possible
allocation rules (payment rules do not enter the equation above), we obtain the desired result.
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Proof of Lemma 3.5 The expected utility of agent i under reporting strategy x

0 ! z and initial
type z is

U

x

0!z

i

(z) = V

x

0!z

i

(z)�P

x

0!z

i

(z), (30)

where P

x

0!z

i

(z) is the expected discounted sum of payments of agent i under reporting strategy
x

0 ! z and initial type z (see similar definitions of Ux

0!z

i

(z) and V

x

0!z

i

(z) in Eqs. (9) and (10)).
Under the same reporting strategy x

0 ! z, but under initial type z

0, the utility of agent i is
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i
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i
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i
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The payments are functions only of reported types, not true types, and therefore, P x

0!z

i

(z) =
P

x

0!z

i

(z0). Therefore, for any z 6= z

0, combining Eqs. (30) and (31) yields
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Periodic ex-post IC guarantees that Ux

0!z

0
i

(z0)�U
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(z0). Therefore, for any z > z
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0 .

Since the partial derivative @V

z!z(x)

@x

exists for all x (see Lemma A.1), we can take the limit as
z

0 " z and obtain that the left-hand side derivative of Ux

0!z

i

(z) for any constant x0 satisfies

d�U
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dz
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i

(s)
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.

Using the same argument for z

0
> z, we obtain that the right-hand side derivative of Ux
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(z)
satisfies
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Since |@V
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| is bounded by V̄

1��

by Lemma A.1, we get that the absolute value of both the left-

hand and right-hand side derivatives of Ux
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(z) are also bounded by V̄

1��

. The function U
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is, therefore, V̄

1��

-Lipschitz-continuous and, thus, di↵erentiable almost everywhere. At all points

where the derivative exists, dU
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. Therefore, the envelope condition follows:
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���
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dz.

Proof of Lemma 3.6 The envelope condition from the relaxed environment (see Lemma 3.2)
also applies to this setting since a deviation that is feasible in the relaxed environment (that is,
using reporting strategy z ! z for an initial type z

0) is also feasible in the dynamic environment.
Therefore, if the mechanism is incentive compatible, then it satisfies Eq. (29), which is identical to
Eq. (15).
To see that IC implies the dynamic monotonicity condition in Eq. (16), simply note that IC

is equivalent to Eq. (11) and Eqs. (15) and (13) are respectively equal to the left-hand and the
right-hand side of Eq. (11). We thus obtain that IC implies Eq. (16).
We now show that if both Eqs. (15) and (16) hold, then the mechanism is IC. If both equations

hold, then for all x and x

0,
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where the last equality follows from Lemma 3.5. The equation above is equivalent to IC (see Eq.
(11)), when the mechanism is periodic ex-post IC for t� 1.

Appendix B: Proofs for Section 4

Lemma B.1 Suppose Assumptions 4.1 and 4.2 hold. Then ↵

i

is strictly increasing for multiplica-
tively separable functions and �

i,t

is strictly increasing for additively separable functions.

Proof: For simplicity of nation, let s= s

i,0. Also, let ⌘
i

(s) denote the hazard rate, i.e.,
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(s)C
i,t

(at)

where (·)0 denotes a partial derivative with respect to s. By the assumptions that A
i

is concave and
strictly increasing, and the hazard rate is positive and strictly increasing, we have that the above
has the same sign as C

i,t

. In the multiplicative case, first note that ↵
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(s) = 1� 1
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which is positive by the assumption.
Proof of Lemma 4.1 If agents are truthful, by Eq. (24), the expected payment of each agent i

given s

i,0 is equal to max{p?
i

(s
i,0),0}, where 0 occurs if agent i is excluded from the system (i /2 a

i

).
Namely,
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where
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i,0, ŝ�i,0)

@s

i,0

���
s

i,0=z

=E
"

1X

t=1

�

t

@v

i,t

(q?t, s
i,0, si,1, . . . si,t)

@s

i,0

|
s

i,0=z

�����si,0 = z, s�i,0 = ŝ�i,0
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For notational convenience, we write:
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where the s

t

i

implicitly depends on the first signal. The expected payment of agent i is equal to:
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where we can drop the max with zero since the agent obtains value zero at all periods when she is
excluded from the system. By changing the order of integration, we have

Z 1

0

max{p?
i

(s, s0,�i

),0}f
i

(s)ds
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(33)

Therefore, the profit of the mechanism matches the upper-bound provided in Corollary 3.1.
Hence, to prove the optimality, it su�ces to show that the mechanism is individually rational. By
construction, we have the utility of agent i equal to 0 if s

i,0 = 0 for any s�i,0. Therefore,
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By Assumption 4.2,
@v

i,t

(q?t,s
i,0,si,1,...si,t)

@s

i,0
is non-negative. Hence, the mechanism is individually ratio-

nal. Precisely, periodic ex-post IR at time 0.
Proof of Lemma 4.2 Define u

i,t

to be the instantaneous utility of agent i at time t. We get
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The last equality follows from Eq. (21). We dropped the conditioning of W (↵̂,�̂)
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, as it is clear from the context. For ease of notation, let s= s0. Because all agents
except i are truthful, we have
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If agent i is truthful and other agents are truthful, we have
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Hence, the allocation rule is aligned with the incentive of agent i. She can maximize her utility
by reporting truthfully.
Observe that agents with ↵̂

i

 0 would have been excluded. Hence, we have
P1

t

0=t

u

it

0 � 0.
Therefore, the mechanism is periodic ex-post IR.
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Proof of Lemma 4.3 Observe that Eq. (15) is followed from Lemma 4.1 and Eq. (33). To estab-
lish Eq. (16), we show that the inequality holds point-wise, i.e., if x� x

0, then

@V

x

i

!x

i

i

(s)

@s

���
s=x

i

� @V

x

0
i

!x

i

i

(s)

@s

���
s=x

i

(34)

By Eq. (14), this is equivalent to
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where E
x

i

!x

i

is the expectation under the stochastic process determined by agent i reporting
according to x

i

! x

i

(while other agents are truthful) and a

?t represents the allocation at time t

in this case. Similarly, for reporting strategy x
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Therefore, by Eq. (36), the inequality below is equivalent to the desired equation, Eq. (34):
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In the following we prove the inequality above. For k 6= i, define x

k

and x

0
k

to be equal s
k,0.

Because a

? and a

0 are optimal allocation rules with respect to (↵(x),�(x)) and (↵(x0),�(x0)), we
have:
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and similarly
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Subtracting these inequalities we get:
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Because for k 6= i, agents are truthful and x

0
k

= x

k

, we have
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Now suppose v

i

is multiplicative separable (i.e., �
i,t

(·, ·) = 0) and Assumption 4.2 holds — we
consider the additive valuations later. Because x� x

0, by Assumption 4.2 and Lemma B.1, we have
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); moreover ↵
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) is less than 1 for x2 [0,1). Multiplying both sides of the inequality
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, yields the following:
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which is equivalent to Eq. (37) for multiplicative-separable valuations.
Now consider the case of additive-separable value functions. We have ↵

i

(x) = ↵

i

(x0) = 1. Plugging
into Eq. (38) we get
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which produces Eq. (37) and, thus, completes the proof.

Appendix C: Proof for the Single Agent Case

Proof of Corollary 5.1 Simply note that under the Virtual-Pivot Mechanism, if the agent is
allocated the item at any time t, the price she pays, under the Virtual-Pivot Mechanism, is not
a function of her report at time t (or any report after t= 0). Furthermore, the prices that the agent
is charged at t� 1 are identical to that in the Virtual-Pivot Mechanism (see Eq. (22)). Also,
the prices charged at t= 0 is identical to that in the Virtual-Pivot Mechanism by construction.


